A NOVEL SUBCLASS OF UNIVALENT FUNCTIONS
INVOLVING OPERATORS OF FRACTIONAL CALCULUS

Abstract

In this paper, we introduce and investigate a novel class of analytic and univalent functions with negative Taylor-Maclaurin coefficients in the open unit disk. For this function class, we obtain characterization and distortion theorems as well as the radii of close-to-convexity, starlikeness and convexity by using techniques involving operators of fractional calculus.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 6
Year: 2017

DOI: 10.12732/ijam.v30i6.4

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] W. G. Atshan, Applications of fractional calculus operators for a new class of univalent functions with negative coefficients defined by Hohlov operator, Math. Slovaca 60 (2010), 75-82.
  2. [2] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
  3. [3] V. Kiryakova, Criteria for univalence of the Dziok-Srivastava and the Srivastava-Wright operators in the class A, Appl. Math. Comput. 218 (2011), 883-892.
  4. [4] S. Owa, On the distortion theorem. I, Kyungpook Math. J. 18 (1978), 53-59.
  5. [5] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077.
  6. [6] R. K. Raina and H. M. Srivastava, A certain subclass of analytic functions associated with operators of fractional calculus, Comput. Math. Appl. 32 (7) (1996), 13-19.
  7. [7] R. K. Raina and H. M. Srivastava, Some subclasses of analytic functions associated with fractional calculus operators, Comput. Math. Appl. 37 (1999), 73-84.
  8. [8] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. College General Ed. Kyushu Univ. 11 (1978), 135-143.
  9. [9] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
  10. [10] H. M. Srivastava and S. Owa, An application of the fractional derivative, Math. Japon. 29 (1984), 383-389.
  11. [11] H. M. Srivastava and M. Saigo, Multiplication of fractional calculus operators and boundary value problems involving the Euler-Darboux equation, J. Math. Anul. Appl. 121 (1987), 325-369.
  12. [12] H. M. Srivastava, M. Saigo and S. Owa, A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl. 131 (1988), 412-420.