PARAMETER ESTIMATION OF EXPONENTIAL HIDDEN MARKOV MODEL AND CONVERGENCE OF ITS PARAMETER ESTIMATOR SEQUENCE

Muhammad Firmasyah1,5, Berlian Setiawaty2,
I. Gusti Putu Purnaba3

1,2,3 First Department of Mathematics
Bogor Agricultural University
Meranti Street, Bogor - 16680, INDONESIA

Abstract: An exponential hidden Markov model (EHMM) is a hidden Markov model which consists of a pair of stochastic processes \{X_t, Y_t\}_{t \in \mathbb{N}}. \{Y_t\}_{t \in \mathbb{N}} is influenced by \{X_t\}_{t \in \mathbb{N}}, which is assumed to form a Markov chain. \{X_t\}_{t \in \mathbb{N}} is not observed. \{Y_t\}_{t \in \mathbb{N}} is an observation process and \text{Y}_t \text{given X}_t has exponential distribution. In this paper, we estimate the parameter of EHMM and study the convergence of the parameter estimator sequence. EHMM is characterized by a parameter \(\phi = (A, \lambda)\) where \(A\) is a transition matrix of \text{X}_t and \(\lambda\) is a vector of parameters of probability density function of \text{Y}_t \text{given X}_t. To determine the parameter estimator, a maximum likelihood method is used. Numerical approximation is used through an Expectation Maximization (EM) algorithm. Under the continuous assumption, the sequence \{\phi^{(k)}\} obtained by the EM algorithm, converges to \(\phi^*\) which is the stationary point of \(\ln L_t(\phi)\) and the sequence \{\ln L_t(\phi^{(k)})\} increasingly converges to \(\ln L_t(\phi^*)\).

AMS Subject Classification: 30B30, 62L12
Key Words: convergence, EM algorithm, exponential hidden Markov, forward-backward algorithm

1. Introduction

An exponential hidden Markov model (EHMM) is a continuous hidden Markov model which consists of a pair of stochastic processes \{X_t, Y_t\}_{t \in \mathbb{N}}. \{Y_t\}_{t \in \mathbb{N}} is influenced by \{X_t\}_{t \in \mathbb{N}}, which is assumed to form a Markov chain. \{X_t\}_{t \in \mathbb{N}} is not observed. \{Y_t\}_{t \in \mathbb{N}} is an observation process and \text{Y}_t \text{given X}_t has exponential distribution. In this paper, we estimate the parameter of EHMM and study the convergence of the parameter estimator sequence. EHMM is characterized by a parameter \(\phi = (A, \lambda)\) where \(A\) is a transition matrix of \text{X}_t and \(\lambda\) is a vector of parameters of probability density function of \text{Y}_t \text{given X}_t. To determine the parameter estimator, a maximum likelihood method is used. Numerical approximation is used through an Expectation Maximization (EM) algorithm. Under the continuous assumption, the sequence \{\phi^{(k)}\} obtained by the EM algorithm, converges to \(\phi^*\) which is the stationary point of \(\ln L_t(\phi)\) and the sequence \{\ln L_t(\phi^{(k)})\} increasingly converges to \(\ln L_t(\phi^*)\).
model which consists of a pair of stochastic processes \(\{X_t, Y_t\}_{t \in \mathbb{N}} \). \(\{Y_t\}_{t \in \mathbb{N}} \) is influenced by \(\{X_t\}_{t \in \mathbb{N}} \), which is not observed. \(\{X_t\}_{t \in \mathbb{N}} \) is assumed to form a Markov chain. \(\{Y_t\}_{t \in \mathbb{N}} \) is an observation process which \(Y_t \) given \(X_t \) has exponential distribution. Let \(S_X = \{1, 2, 3, ..., m\} \) be a state space of \(\{X_t\}_{t \in \mathbb{N}} \), \(A = [a_{ij}]_{m \times m} \) be a transition probability matrix with
\[a_{ij} = P(X_t = j | X_{t-1} = i) = P(X_2 = j | X_1 = i), \]
where \(a_{ij} \geq 0, 1 \leq i, j \leq m \) and \(\sum_{j=1}^{m} a_{ij} = 1 \) for
\(i \in S_X \). \(\varphi = [\varphi_i]_{m \times 1} \) is an initial state probability vector with
\(\varphi_i = P(X_1 = i) \) for \(i = 1, 2, 3, ..., m \), \(\sum_{i=1}^{m} \varphi_i = 1 \) and \(A \varphi = \varphi \). \(\lambda = (\lambda_i)_{m \times 1} \) is a vector that characterizes the probability density function of \(Y_t \) given \(X_t = i \), that is
\(\gamma_{yi} = f(y) = \frac{1}{\lambda_i} e^{-\frac{1}{\lambda_i} y} \) for \(y > 0 \). So the EHMM can be characterized by a parameter \(\phi = (A, \lambda) \).

The aims of this paper are:

1. To estimate the parameter \(\phi \) for an observation \(\{y_t\} \) which is assumed to be generated by the EHMM.
2. To determine the convergence of parameter estimator sequence.

2. Parameter Estimation (see [1])

Let \(T \) be an observation number, \(y = (y_1, y_2, ..., y_T) \) be an observation sequence, and \(x = (i_1, i_2, ..., i_T) \) be a sequence which is not observed. Let \(\epsilon > 0 \) be a number close to 0, and \(\Phi = \{ \phi = (A, \lambda) : A \in [0, 1]^{m^2}, \lambda \in [\epsilon, \frac{1}{\epsilon}]^m \} \) be the EHMM parameter space.

Assume that:

1. \(a_{ij} : \Phi \to \mathbb{R} \) with \(a_{ij} = a_{ij}(\phi) \) is a continuous function in \(\Phi, \forall i, j \in S_X \).
2. \(\lambda_i : \Phi \to \mathbb{R} \) with \(\lambda_i = \lambda_i(\phi) \) is a continuous function in \(\Phi, \forall i \in S_X \).
3. \(\varphi_i : \Phi \to \mathbb{R} \) with \(\varphi_i = \varphi_i(\phi) \) is a continuous function in \(\Phi, \forall i \in S_X \).

Define the likelihood function for the observation process \(Y \) as follows:

\[
L_T(\phi) = f(y_1, y_2, ..., y_T | \phi)
= \sum_{i_1=1}^{m} ... \sum_{i_T=1}^{m} f(Y_T = y_T, X_T = i_T, Y_{T-1} = y_{T-1}, X_{T-1} = i_{T-1}, ...)
\]

\[
= f(Y_1 = y_1, X_1 = i_1 | \phi)
\]

(1)
\[= \sum_{i_1=1}^{m} \ldots \sum_{i_T=1}^{m} \varphi_{i_1} \gamma_{y_1 i_1} \prod_{t=2}^{T} a_{i_{t-1} i_t} \gamma_{y_t i_t}.\]

Define also:
\[
L^c_T(\phi) = f(y_T, i_T, y_{T-1}, i_{T-1}, \ldots, y_1, i_1|\phi)
= f(y_T|i_T, y_{T-1}, i_{T-1}, \ldots, y_1, i_1, \phi) f(i_T, y_{T-1}, i_{T-1}, \ldots, y_1, i_1|\phi)
= \varphi_{i_1} \gamma_{y_1 i_1} \prod_{t=2}^{T} a_{i_{t-1} i_t} \gamma_{y_t i_t}.\]

From (1) and (2), we have
\[
L_T(\phi) = \sum_{i_1=1}^{m} \ldots \sum_{i_T=1}^{m} \varphi_{i_1} \gamma_{y_1 i_1} \prod_{t=2}^{T} a_{i_{t-1} i_t} \gamma_{y_t i_t}
= \sum_{x} f(y, x|\phi) = \sum_{x} L^c_T(\phi).
\]

Calculating the likelihood function directly is very complicated. So, a Forward-Backward algorithm is used to solve the problem.

2.1. Forward-Backward Algorithm

A Forward-backward algorithm is an iterative algorithm which is used to calculate the joint probability of observation process sequence \((y_1, y_2, \ldots, y_T)\). The Forward-Backward algorithm is used to speed up the computing process.

Define the forward probability for \(t = 1, 2, \ldots, T\) and \(i = 1, 2, \ldots, m\) as
\[
\alpha_t(i|\phi) = P(Y_1 = y_1, Y_2 = y_2, \ldots, Y_t = y_t, X_t = i|\phi)
\]
and the backward probability for \(t = T - 1, T - 2, \ldots, 1\) and \(i = 1, 2, \ldots, m\) as
\[
\beta_t(i|\phi) = P(Y_{t+1} = y_{t+1}, \ldots, Y_T = y_T|X_t = i, \phi).
\]

Then, we have
\[
\alpha_1(i|\phi) = \gamma_{y_1 i} \varphi_i,
\]
\[
\alpha_{t+1}(j|\phi) = \left(\sum_{i \in S_X} \alpha_t(i|\phi) a_{ij} \right) \gamma_{y_{t+1} j},
\]
for \(t = 1, 2, \ldots, T - 1\) and
\[
\beta_T(j|\phi) = 1.
\]
\[\beta_t(j|\phi) = \sum_{i \in S_X} \beta_{t+1}(i|\phi) \gamma_{yt+1} a_{ij}, \]

for \(t = T - 1, T - 2, ..., 1 \) and \(i, j \in S_X \).

Proposition. (see [3]) For each \(t = 1, 2, ..., T \):

\[L_T(\phi) = \sum_{i \in S_X} \alpha_t(i|\phi) \beta_t(i|\phi). \]

The problem is to find \(\phi^* \in \Phi \) which maximizes \(L_T(\phi) \). We modify the problem becomes to find \(\phi^* \in \Phi \) which maximizes \(\ln L_T(\phi) \). The EM algorithm is then used to find them. As a result of EM algorithm, we obtain a sequence \(\{\phi^{(k)}\} \) in \(\Phi \) such that a sequence \(\{\ln L_T(\phi^{(k)})\} \) increases and converges to \(\ln L_T(\phi) \).

It is known that

\[f(x|y, \phi) = \frac{f(y, x|\phi)}{f(y|\phi)} = \frac{L_T^c(\phi)}{L_T(\phi)}, \]

then

\[\ln f(x|y, \phi) = \ln \left(\frac{L_T^c(\phi)}{L_T(\phi)} \right) = \ln L_T^c(\phi) - \ln L_T(\phi), \]

\[\ln L_T(\phi) = \ln L_T^c(\phi) - \ln f(x|y, \phi). \]

From above, for each \(\hat{\phi} \in \Phi \),

\[E_{\hat{\phi}}(\ln L_T(\phi)|y) = E_{\hat{\phi}}(\ln L_T^c(\phi)|y) - E_{\hat{\phi}}(\ln f(x|y, \phi)|y) \quad (3) \]

and

\[E_{\hat{\phi}}(\ln L_T(\phi)|y) = \sum_x \ln L_T(\phi) f(x|y, \phi) = \sum_x \ln f(y|\hat{\phi}) \frac{f(x, y|\hat{\phi})}{f(y|\hat{\phi})} \]

\[= \frac{f(y|\hat{\phi})}{f(y|\hat{\phi})} \sum_x f(x, y|\hat{\phi}) = \ln \frac{f(y|\hat{\phi})}{f(y|\hat{\phi})} f(y|\hat{\phi}) \]

\[= \ln f(y|\phi) = \ln L_T(\phi). \quad (4) \]

Define

\[Q(\phi|\hat{\phi}) = E_{\hat{\phi}}(\ln L_T^c(\phi)|y) \]

and

\[H(\phi|\hat{\phi}) = E_{\hat{\phi}}(\ln f(x|y, \phi)|y). \]

From (3) and (4),

\[\ln L_T(\phi) = Q(\phi|\hat{\phi}) - H(\phi|\hat{\phi}). \quad (5) \]
Theorem 2.1. (see [2]) Let $\epsilon > 0$ be a number close to 0, and $\Phi = \{ \phi = (A, \lambda) : A \in [0, 1]^m, \lambda \in [\epsilon, \frac{1}{\epsilon}]^m \}$ be the EHMM parameter space. Then:

1. Φ is a bounded subset in \mathbb{R}^m.

2. $\ln L_T(\phi)$ is a continuous function in Φ and differentiable in the interior of Φ.

3. $\Phi_{\phi(0)} = \{ \phi \in \Phi : \ln L_T(\phi) \geq \ln L_T(\phi(0)) \}$ is compact for each $\ln L_T(\phi(0)) > -\infty$.

4. $Q(\phi|\hat{\phi})$ is continuous in ϕ.

Proof.

1. $a_{ij} \in [0, 1]$ for each i, j since $a_{ij} = P(X_t = j|X_{t-1} = i)$ and $\lambda_i \in [\epsilon, \frac{1}{\epsilon}]$. Therefore $\Phi \subseteq [0, 1]^m \times [\epsilon, \frac{1}{\epsilon}]^m$ which is a bounded subset in \mathbb{R}^m.

2. Since $L_T(\phi)$ is obtained from an addition and multiplication of continuous and differentiable function in interior Φ, then $L_T(\phi)$ is continuous.

3. Set $\phi(0) \in \Phi$. It will be proven that $\Phi_{\phi(0)}$ is compact. It is enough to prove that $\Phi_{\phi(0)}$ is closed and bounded in Φ. Since $\Phi_{\phi(0)} \subset \Phi$ and Φ is bounded then $\Phi_{\phi(0)}$ is bounded. $\Phi_{\phi(0)}$ is closed $\iff \Phi_{\phi(0)} = \overline{\Phi_{\phi(0)}}$. Since $\Phi_{\phi(0)} \subset \overline{\Phi_{\phi(0)}}$, it is enough to prove $\overline{\Phi_{\phi(0)}} \subset \Phi_{\phi(0)}$. Let $\phi^* \in \overline{\Phi_{\phi(0)}}$ then ϕ^* is a limit point of $\Phi_{\phi(0)}$. Thus, there is a sequence $\{\phi(k)\}$ in $\Phi_{\phi(0)}$ with $\ln L_T(\phi(k)) > \ln L_T(\phi(0))$ and $\lim_{k \to \infty} \phi(k) = \phi^*$. If $\phi^* \notin \Phi_{\phi(0)}$ then $\ln L_T(\phi^*) < \ln L_T(\phi(0))$. Let $\epsilon = L_T(\phi(0)) - L_T(\phi^*) > 0$, since $\lim_{k \to \infty} \phi(k) = \phi^*$ and $\ln L_T(\phi)$ is continuous in Φ, then $\lim_{k \to \infty} L_T(\phi(k)) = L_T(\phi^*)$. For each $\epsilon > 0$, there is k^* such that for each $k \geq k^*$ then $L_T(\phi(k)) - \ln L_T(\phi^*) < \epsilon = L_T(\phi(0)) - L_T(\phi^*)$. So $L_T(\phi(k)) < L_T(\phi(0))$. It is contradicted to the assumption, this implies that $\Phi_{\phi(0)}$ is closed.

4. Since $Q(\phi|\phi(k))$ is an addition and multiplication of

$$
\alpha_t(i|\phi(k)), \beta_t(i|\phi(k)), a_{ij}(\phi), \lambda(\phi), \ln \varphi(\phi), \ln \lambda_i(\phi), \ln \gamma_{ij}(\phi),
$$

which are continuous in Φ, then $Q(\phi|\phi(k))$ is continuous in Φ.

\[\square\]

Corollary 2.1. The sequence $\{\phi(k)\}$ is well defined in Φ.

2.2. EM Algorithm

1. Set a value $\phi^{(k)}$ for $k = 0$.

2. E step : compute $Q(\phi|\phi^{(k)}) = E_{\phi^{(k)}}(\ln L_T(\phi)|Y = y)$.

3. M step : find the value $\phi^{(k+1)}$ which maximizes $Q(\phi|\phi^{(k)})$ so that

 $Q(\phi^{(k+1)}|\phi^{(k)}) \geq Q(\phi|\phi^{(k)}), \forall \phi \in \Phi$.

4. Replace k by $k+1$ and repeat steps 2 to 4 until $|\ln L_T(\phi^{(k+1)}) - \ln L_T(\phi^{(k)})| < \text{desirable error}$. In other words the sequence $\{\ln L_T(\phi^{(k)})\}$ is convergent.

Lemma 2.1. $\partial_\phi(\ln L_T(\phi)) = E_{\hat{\phi}}(\partial_\phi \ln L_T(\phi)|y)$, $\partial_\phi Q(\phi|\hat{\phi}) = E_{\hat{\phi}}(\partial_\phi \ln L_T^c(\phi)|y)$ and $\partial_\phi H(\phi|\hat{\phi}) = E_{\hat{\phi}}(\partial_\phi \ln f(x|y, \phi)|y)$.

From (5) and Lemma 2.1,

\[
\partial_\phi(\ln L_T(\phi)) = E_{\hat{\phi}}(\partial_\phi \ln L_T(\phi)|y) = E_{\hat{\phi}}(\partial_\phi \ln L_T^c(\phi)|y) - E_{\hat{\phi}}(\partial_\phi \ln f(x|y, \phi)|y).
\]

Define

\[D^{10}Q(\phi|\hat{\phi}) = E_{\hat{\phi}}(\partial_\phi \ln L_T^c(\phi)|y),\]

and

\[D^{10}H(\phi|\hat{\phi}) = E_{\hat{\phi}}(\partial_\phi \ln f(x|y, \phi)|y).
\]

From (6), (7) and (8)

\[\partial_\phi(\ln L_T(\phi)) = D^{10}Q(\phi|\hat{\phi}) - D^{10}H(\phi|\hat{\phi}).\]

Lemma 2.2. For each $\phi, \hat{\phi} \in \Phi$ then $H(\phi|\hat{\phi}) \leq H(\hat{\phi}|\hat{\phi})$.

Lemma 2.3. For each $\hat{\phi} \in \Phi$ then $D^{10}H(\hat{\phi}|\hat{\phi}) = 0$.

Based on Lemma 2.2, Lemma 2.3 and the properties of a maximum and minimum value in a compact metric space (see [4]), it implies the following corollary.

Corollary 2.2. $H(\phi|\hat{\phi})$ attains global maximum at $\hat{\phi}$.

Theorem 2.2. (see [2]) For each $\phi^{(k)} \in \Psi$ we have $\ln L_T(\phi^{(k+1)}) \geq \ln L_T(\phi^{(k)})$.

Proof. It is given an initial value $\phi^{(0)} \in \Phi$. From the EM algorithm, there is $\phi^{(1)} \in \Phi$ so that $\ln L_T(\phi^{(1)}) \geq \ln L_T(\phi^{(0)})$. By obtaining $\phi^{(1)} \in \Phi$, it is obtained $\phi^{(2)}$ so that $\ln L_T(\phi^{(2)}) \geq \ln L_T(\phi^{(1)})$ etc. There is the sequence $\{\phi^{(k)}\}$ which $\ln L_T(\phi^{(k+1)}) \geq \ln L_T(\phi^{(k)})$ and $\{\ln L_T(\phi^{(k)})\}$ which is increasing. It implies for each $\phi^{(k)} \in \Psi$,

$$
\ln L_T(\phi^{(k+1)}) - \ln L_T(\phi^{(k)}) = \left(Q(\phi^{(k+1)}|\phi^{(k)}) - H(\phi^{(k+1)}|\phi^{(k)}) \right) - \left(Q(\phi^{(k)}|\phi^{(k)}) - H(\phi^{(k)}|\phi^{(k)}) \right)
$$

$$
= \left(Q(\phi^{(k+1)}|\phi^{(k)}) - Q(\phi^{(k)}|\phi^{(k)}) \right) - \left(H(\phi^{(k+1)}|\phi^{(k)}) - H(\phi^{(k)}|\phi^{(k)}) \right). \quad (10)
$$

According to the M step, it is defined $Q(\phi^{(k+1)}|\phi^{(k)}) \geq Q(\phi|\phi^{(k)})$ and from Lemma 2.2, $H(\phi^{(k)}|\phi^{(k)}) \geq H(\phi|\phi^{(k)})$ for each $\phi \in \Phi$ and $H(\phi^{(k+1)}|\phi^{(k)}) - H(\phi^{(k)}|\phi^{(k)}) \leq 0$. So it can be said that

$$
\ln L_T(\phi^{(k+1)}) - \ln L_T(\phi^{(k)}) \geq 0
$$

$$
\ln L_T(\phi^{(k+1)}) \geq \ln L_T(\phi^{(k)}). \quad (11)
$$

Theorem 2.3. (see [2]) For each $\phi^{(k)} \notin \Psi$,

$$
\ln L_T(\phi^{(k+1)}) - \ln L_T(\phi^{(k)}).
$$

Proof. From (8), it is known

$$
\partial_{\phi^{(k)}} (\ln L_T(\phi^{(k)})) = D^{10} Q(\phi^{(k)}|\phi^{(k)}) - D^{10} H(\phi^{(k)}|\phi^{(k)}).
$$

Since $D^{10} H(\phi^{(k)}|\phi^{(k)}) = 0$, then $\partial_{\phi^{(k)}} (\ln L_T(\phi^{(k)})) = D^{10} Q(\phi^{(k)}|\phi^{(k)})$. For $\phi^{(k)} \in \Psi$, $\partial_{\phi^{(k)}} (\ln L_T(\phi^{(k)})) \neq 0$ and $D^{10} Q(\phi^{(k)}|\phi^{(k)}) \neq 0$ so that $\phi^{(k)}$ is not a local maximum of $Q(\phi|\phi^{(k)})$. According to the M step, it is defined $Q(\phi^{(k+1)}|\phi^{(k)}) \geq Q(\phi|\phi^{(k)})$ for each $\phi \in \Phi$. Thus, it is obtained $Q(\phi^{(k+1)}|\phi^{(k)}) \geq Q(\phi^{(k+1)}|\phi^{(k)})$ and it implies

$$
\ln L_T(\phi^{(k+1)}) \geq \ln L_T(\phi^{(k)}). \quad (12)
$$
Corollary 2.3. The sequence \(\{ \ln L_T(\phi^{(k)}) \} \) is an increasing sequence.

Theorem 2.4. Let \(E_{\phi^{(k)}}(\ln L_T^r(\phi)|Y = y) = Q(\phi|\phi^{(k)}) \), then

\[
Q(\phi|\phi^{(k)}) = \sum_{i \in S_X} \frac{\alpha_1(i|\phi^{(k)}) \beta_1(i|\phi^{(k)})}{\sum_{l \in S_X} \alpha_t(l|\phi^{(k)}) \beta_t(l|\phi^{(k)})} \ln \varphi_i(\phi)
\]

\[
+ \sum_{i \in S_X} \sum_{t=1}^{T} \frac{\alpha_t(i|\phi^{(k)}) \beta_t(i|\phi^{(k)})}{\sum_{l \in S_X} \alpha_t(l|\phi^{(k)}) \beta_t(l|\phi^{(k)})} \ln f(Y_t = y_t|X_t = i, \phi)
\]

\[
+ \sum_{i \in S_X} \sum_{j \in S_X} \sum_{t=1}^{T-1} \frac{a_{ij}(\phi^{(k)}) \alpha_t(i|\phi^{(k)}) \beta_{t+1}(j|\phi^{(k)}) J(y)}{\sum_{l \in S_X} \alpha_t(l|\phi^{(k)}) \beta_t(l|\phi^{(k))} \ln a_{ij}(\phi)},
\]

where \(J(y) = f(Y_{t+1} = y_{t+1}|X_{t+1} = j, \phi^{(k)}) \).

Theorem 2.5. Let \(\phi = (A, \lambda) \) be the parameter of \(Q(\phi|\phi^{(k)}) \) with \(A = [a_{ij}] \) and \(\lambda = \lambda_i \), then

\[
a_{ij}(\phi^{(k+1)}) = \frac{\sum_{t=1}^{T-1} a_{ij}(\phi^{(k)}) \alpha_t(i|\phi^{(k)}) \beta_{t+1}(j|\phi^{(k)}) J(y)}{\sum_{t=1}^{T-1} \alpha_t(i|\phi^{(k)}) \beta(i|\phi^{(k)})},
\]

where \(J(y) = f(Y_{t+1} = y_{t+1}|X_{t+1} = j, \phi^{(k)}) \) and

\[
\lambda(\phi^{(k+1)}) = \frac{\sum_{t=1}^{T} \alpha_t(i|\phi^{(k)}) \beta_t(i|\phi^{(k)}) (y_t)}{\sum_{t=1}^{T} \alpha_t(i|\phi^{(k)}) \beta_t(i|\phi^{(k)})}.
\]

3. Convergence of Parameter Estimator EHMM

Let \(\{ \phi^{(k)} \} \) be the sequence which is obtained from the EM algorithm. It will be proven that the sequence \(\{ \ln L_T(\phi^{(k)}) \} \) converges to \(\ln L_T(\phi^*) \) which \(\phi^* \) is a stationary point of \(\ln L_T(\phi) \).

Based on the properties of a continuous function in a compact metric space (see [4]), we have the following corollaries.

Corollary 3.1. Let \(h : \Phi \to \mathbb{R}^1 \) be a function with \(h(\phi) = \ln L_T(\phi) \). Then the range of \(h(\phi) \) is a compact metric space in \(\mathbb{R}^1 \).

Corollary 3.2. The range of \(h(\phi) \) is bounded.
Corollary 3.3. The sequence \(\{\ln L_T(\phi^{(k)})\} \) is an increasing and convergent sequence in \(h(\phi) \) which is convergent. Since \(h(\phi) \) is compact, there is \(\phi^* \in \Phi \) such that \(\lim_{k \to \infty} \ln L_T(\phi^{(k)}) = \ln L_T(\phi^*) \).

Theorem 3.1. (see [2]) Let \(g(\hat{\phi}) = \{\delta' \in \Phi : Q(\delta'|\hat{\phi}) \geq Q(\delta|\hat{\phi}) \text{ for each } \delta \in \Phi\} \) then \(g \) is a closed set in \(\Phi \setminus \Psi \).

Proof. Since \(g \) is a set value function (see [5]), from \(Q(\delta'|\phi') \) it is known that \(\delta' \in g(\phi') \) for \(\delta', \phi' \in \Phi \). For each \(\hat{\phi} \in \Phi \setminus \Psi \) and from Theorem 2.1 (4), \(Q(\delta|\phi) \) is a continuous function for \(\delta \) and \(\phi \) in \(\Phi \times \Phi \), if \(\phi^{(k)} \to \hat{\phi} \) and \(\delta^{(k)} \to \bar{\delta} \) then \(Q(\delta^{(k)}|\phi^{(k)}) \to Q(\bar{\delta}|\hat{\phi}) \) for \(k \to \infty \). So that, it is obtained \(\delta^{(k)} \in g(\phi^{(k)}) \) for \(k = 1, 2, \ldots \) and it satisfies if \(\phi^{(k)} \to \hat{\phi} \) and \(\delta^{(k)} \to \bar{\delta} \), then \(\bar{\delta} \in g(\hat{\phi}) \), for \(k \to \infty \). So that \(g \) is a closed function, it is satisfied by the EM algorithm i.e \(\delta^{(k)} \) corresponding to \(\phi^{(k+1)} \).

Theorem 3.2. (see [2]) Let \(Q(\phi|\phi^{(k)}) \) be a continuous function of \(\phi, \phi^{(k)} \in \Phi \times \Phi \). Let \(\{\phi^{(k)}\} \) be the EHMM estimator sequence which is obtained from the EM algorithm,

1. \(\lim_{k \to \infty} \ln L_T(\phi^{(k)}) = \ln L_T(\phi^*) \), which the convergence is increasing.

2. If \(\lim_{k \to \infty} \phi^{(k)} = \phi^* \), then \(\phi^* \) is a stationary point of \(\ln L_T(\phi) \).

Proof. 1. From Corollary 3.1, Theorem 2.2 and Theorem 2.3,

\[
\lim_{k \to \infty} \ln L_T(\phi^{(k)}) = \ln L_T(\phi^*).
\]

The sequence \(\{\ln L_T(\phi^{(k)})\} \) is an increasing sequence.

2. Let \(\lim_{k \to \infty} \phi^{(k)} = \phi^* \), if \(\phi^* \) is not a stationary point \((\phi^* \notin \Psi) \). We consider a sequence \(\{\phi^{(k+1)}\} \) so that \(\phi^{(k+1)} \in g(\phi^{(k)}) \) for each \(k \) and the sequence \(\{\phi^{(k+1)}\} \) in a compact set according to Theorem 2.1 (3). It implies that there is the sequence \(\{\phi^{(k+1)}\} \) so that for \(m \to \infty \) then \(\phi^{(k+1)m} \to \hat{\phi} \) and for \(k \to \infty \) then \(\phi^{(k+1)} \to \hat{\phi} \). From Theorem 3.1, \(g \) is a closed function in \(\Phi \setminus \Psi \) and the assumption \(\phi^* \notin \Psi \) thus \(\hat{\phi} \in g(\phi^*) \). From (12), it implies

\[
\ln L_T(\hat{\phi}) > \ln L_T(\phi^*). \quad (13)
\]

Since \(\ln L_T(\phi) \) in a continuous function, from Theorem 3.2 (1) and \(\phi^{(k+1)} \to \hat{\phi} \) for \(k \to \infty \), then \(\lim_{k \to \infty} \ln L_T(\phi^{(k)}) = \lim_{k \to \infty} \ln L_T(\phi^{(k+1)}) \). It implies
\[\ln L_T(\phi^*) = \ln L_T(\hat{\phi}) \] and it is contradicted by (13). So \(\phi^* \) is not a stationary point.

\[\square \]

References

