ON THE NUMBER OF EVENT APPEARANCES
IN A MARKOV CHAIN

Natalia Mezhennaya
Applied Mathematics Department
Bauman Moscow State Technical University
ul. Baumanskaya 2-ya, 5/1
Moscow - 105005, RUSSIA

Abstract: The paper presents the estimate for the total variation distance between the distribution of the number of appearances of homogeneous disjoint events in a segment of strongly ergodic Markov chain on the finite state space and accompanying Poisson distribution (i.e., Poisson distribution with a parameter equal to the expectation of the random variable under consideration). For this purpose the Chen–Stein method was used. As a result Poisson and normal limit theorems for the number of events appearances are derived. The considered scheme describes the well-known number of runs on consecutive letters, the number of \(f \)-recurrent runs, etc., and can be used for describing the properties of distribution of the special form scan statistic.

AMS Subject Classification: 60B10, 60J10, 60F05, 62E20
Key Words: number of events, Markov chain, Chen–Stein method, limit theorem

1. Introduction

The problem of the number of runs of consecutive identical letters in a sequence of independent random variables [7] and its generalization to the case of a sequence forming a Markov chain (see, e.g., [4]) are well known. We consider the following more general scheme.
Let \(\{X_j, j = 1, \ldots, n\} \) be a Markov chain, \(s \geq 1 \). We suppose (informally) that the random event \(A_j \) depends only on the random variables \(X_j, \ldots, X_{j+s} \), and that the set of events \(\{A_j, j = 1, 2, \ldots, n-s\} \) is homogeneous and has the property \(\Pr \{A_i A_j\} = 0 \) for \(|i-j| \leq s \).

In this paper, we study the distribution of the number of appearances of events \(A_j \) in a segment of a Markov chain. For example, such a scheme describes the well-known run of consecutive letters. Thus, according to [7, p. 62], the letters \(X_j, \ldots, X_{j+s} \) form a run of consecutive \(a \)'s of at least \(t \) length if \(X_{j+1} \neq a, X_{j+2} = a, \ldots, X_{j+t} = a \).

This definition could be expanded. Let \(f : A_N^l \to A_N^t \) be a numerical function, \(l \geq 1 \). We define the event as follows:

\[
A_j = \{X_{j+t} \neq f(X_j, \ldots, X_{j+t-1}), X_{j+t+1} = f(X_{j+1}, \ldots, X_{j+t}), \ldots, X_{j+2l+t} = f(X_{j+t}, \ldots, X_{j+t+l-1})\}.
\]

In this case, the event \(A_j \) means that \(X_j, \ldots, X_{j+t+l} \) form an \(f \)-recurrent run of length at least \(t \) (see. [17]). The events \(A_i \) and \(A_j \) are incompatible for \(|i-j| \leq s = t + l \).

It is easy to see that the concept of the \(f \)-recurrent run includes a run of consecutive \(a \)'s ([7, p. 62]). Indeed, if \(l = 1 \) and the function \(f \equiv a, a \in A_N^t \), then

\[
A_j = \{X_{j+1} \neq a, X_{j+2} = a, \ldots, X_{j+t+1} = a\}
\]

and the \(f \)-recurrent run coincides with the run of consecutive \(a \)'s of at least \(t \) length.

The exact distributions of the numbers of runs in binary Markov chains were studied by Savelyev and Balakin [23, 24], Antzoulakos [1], Inoue [11], and their limit distributions in Markov chains with any number of states were obtained by Tikhomirova [25], Chryssaphinou et al. [5], and Fu et al. [9]. The distribution of the length of the longest run was considered by Erdos and Revesz [6], Fu [8], and Lou [13] for a sequence of independent random variables and by Chryssaphinou and Vaggelatou [4, 26] and Zhang [27] for a Markov chain.

The distribution of the number of \(f \)-recurrent runs in a sequence of independent random variables was studied by Mikhailov [16, 17]. Similar results for the number of usual and \(f \)-recurrent runs with possible omissions of letters were obtained by Mezhennaya in [14] and [15], respectively. There are other generalizations of the problem about the distribution of the number of runs. For example, Minakov [22] discussed the distribution of the number of monotone tuples and runs in a finite ergodic Markov chain.
The problem under consideration is closely related to the problem of the number of repetitions of tuples in a random sequence. The limiting distribution of the number of pairs of identical tuples in a Markov chain was studied by Mikhailov and Shoitov [18, 20, 21], and the number of tuples with the same structure by Mikhailov [19].

The considered problem is also related to the description of properties of widely known scan statistics. According to [10, p. 58], scan statistic is defined as follows:

\[T_{n,s}(u) = \max_{1 \leq i \leq n-k+1} \sum_{j=i}^{i+s-1} I\{X_j > u\} \]

(in what follows \(I_A \) is an indicator of a random event \(A \)). The value of \(T_{n,s}(u) \) is equal to the maximum number of exceedance occurrences by the random values \(\{X_j, j = 1, \ldots, n\} \) of the threshold value \(u \) among all moving windows of length \(s \).

We denote

\[A_i = \begin{cases} \sum_{j=i}^{i+s-1} I\{X_j > u\} = l - 1, & \sum_{j=i+1}^{i+s} I\{X_j > u\} = l \end{cases} \]

Then

\[\{T_{n,s}(u) < l\} = \left\{ \sum_{i=1}^{n-s} I_{A_i} = 0 \right\} \]

The distributions (both exact and asymptotic) of scan statistics for a sequence of independent random variables have been well studied [10], and their applications in various applied problems [10, 2] are also widely discussed.

In this paper, we estimate the total variation distance between the distribution of the number of appearances of events \(A_j \) in a segment of Markov chain and the accompanying Poisson distribution. As a result the Poisson and normal limit theorem for the random variable under consideration will be derived.

2. Main Results

Let \(\{X_j, j = 1, \ldots, n\} \) be a strongly ergodic stationary Markov chain with the states set \(A_N = \{1, \ldots, N\}, \ N \geq 2 \), with the transition probability matrix \(P = ||p_{a,b}||_{a,b \in A_N} \) and stationary distribution \(\{\pi_a, a \in A_N\} \). The elements of the matrix \(P^n \) are denoted by \(p_{a,b}^{(n)} \), for \(n = 1 \) \(p_{a,b}^{(1)} = p_{a,b} \).
According to [12, Cor. 4.1.5, p. 71] there are constants $C, \gamma > 0$ such as
\[|\mathbb{P}^{(n)}_{a,b} - \pi_b| \leq C \pi_b e^{-\gamma n}, \quad n \geq 1. \]

(1)

We assume that the random event A_j depends only on the random variables X_j, \ldots, X_{j+s}, $s \geq 1$, and that the set of events $\{ A_j, j = 1, \ldots, n - s \}$ is homogeneous and has the property $\mathbb{P}\{ A_i | A_j \} = 0$ for $|i - j| \leq s$.

Let $\Gamma = \{ 1, \ldots, n - s \}$, $\{ \alpha_j = I_{A_j} : j \in \Gamma \}$ be the set of random indicators corresponding to the random events $\{ A_j, j \in \Gamma \}$, and $Q_s = \mathbb{P}\{ A_j \}$ be the probability of any event from the set $\{ A_j, j \in \Gamma \}$.

We define the random variable $\xi = \sum_{j=1}^{n-s} \alpha_j$, which is equal to the number of appearances of events A_j in $\{ X_j, j = 1, \ldots, n \}$, and its expectation
\[\lambda_s = \mathbb{E}\xi = (n - s)Q_s. \]

(2)

The following notation will be used: $\mathcal{L}(\xi)$ for the distribution of the random variable ξ, $\text{Pois}(\lambda)$ for the Poisson distribution with parameter λ, $\mathcal{N}(0,1)$ for the standard normal distribution, and $\rho(\mathcal{L}(\xi), \mathcal{L}(\eta))$ for the total variation distance between $\mathcal{L}(\xi)$ and $\mathcal{L}(\eta)$, respectively. For non-negative integer random variables ξ and η the total variation distance is given by the formula
\[\rho(\mathcal{L}(\xi), \mathcal{L}(\eta)) = \frac{1}{2} \sum_{u=0}^{\infty} |\mathbb{P}\{ \xi = u \} - \mathbb{P}\{ \eta = u \}|. \]

Theorem 1. Let $s, m \geq 1$ and $\lambda_s \geq 1$. Then
\[\rho(\mathcal{L}(\xi), \text{Pois}(\lambda_s)) \leq \left(2(s + 2m) + 1 + \frac{2C}{e^{\gamma} - 1} \right) \frac{\lambda_s}{n - s} \]
\[+ Ce^{-\gamma(m+1)} \sqrt{\lambda_s} \left(2 + Ce^{-\gamma(m+1)} + e^{-\gamma(s+m+1)} \right), \]
where the constants C and γ are defined in (1).

Corollary 2. Let $s, n \to \infty$, such that $s/n \to 0$, $Q_s \to 0$, $\lambda_s \to \lambda \in (0, \infty)$. Then $\mathcal{L}(\xi) \to \text{Pois}(\lambda)$.

Corollary 3. Let $s, n \to \infty$, such that $\lambda_s \to \infty$, $s\lambda_s/n \to 0$, $\lambda_s = o(e^{\gamma s})$. Then $\mathcal{L}((\xi - \lambda_s)/\sqrt{\lambda_s}) \to \mathcal{N}(0,1)$.

Corollaries 2 and 3 follow immediately from Theorem 1.
3. Proof of Theorem 1

We will use Theorem 1.A of [3, p. 9] and the proof scheme proposed by Mikhailov and Shoitov [21] and Minakov [22] to estimate the total variation distance between the distribution of the random variable ξ and the accompanying Poisson distribution (i.e., the Poisson distribution with parameter λ_s).

For each $i \in \Gamma$ we define the set of indices $\Gamma^s_i = \{ j \in \Gamma \setminus \{i\} \}$ such that α_i and α_j are strongly dependent. The remaining indices are assigned to the set $\Gamma^w_i = \Gamma \setminus \{ \Gamma^s_i \cup \{i\} \}$, which is called a set of weak dependence for a random indicator α_i. We present the formulation of Theorem 1.A from [3] for our case.

Theorem 4. For each $i \in \Gamma$, let the set $\Gamma \setminus \{i\}$ be split into the disjoint subsets Γ^s_i and Γ^w_i. Then

$$\rho(\mathcal{L}(\xi), \text{Pois}(\lambda_s)) \leq \min \left\{ 1, \frac{1}{\lambda_s} \right\} (S_1 + S_2) + \min \left\{ 1, \frac{1}{\sqrt{\lambda_s}} \right\} S_3,$$

where

$$S_1 = \sum_{i \in \Gamma} \sum_{j \in \Gamma^s_i \cup \{i\}} \mathbb{E}\alpha_i \mathbb{E}\alpha_j,$$

$$S_2 = \sum_{i \in \Gamma} \sum_{j \in \Gamma^s_i} \mathbb{E}\alpha_i \mathbb{E}\alpha_j,$$

$$S_3 = \sum_{i \in \Gamma} \mathbb{E}\left| \mathbb{E}\alpha_i - \mathbb{E}(\alpha_i | \{\alpha_j, j \in \Gamma^w_i\}) \right|.$$

Let $m \geq 1$. We put $\Gamma^s_i = \{ j \in \Gamma : 1 \leq |i - j| \leq s + m \}$, $\Gamma^w_i = \Gamma \setminus (\{i\} \cup \Gamma^s_i)$, and estimate all summands in (3).

Let us begin with the sum S_1, which is given by (4). Since $|\Gamma^s_i \cup \{i\}| \leq 2(s + m) + 1$ and $|\Gamma| = n - s$, then considering the definition (2), we derive

$$S_1 \leq (2(s + m) + 1)(n - s)Q_s^2 = (2(s + m) + 1)\lambda_s Q_s.$$

(7)

Next, we turn to S_2 (see (5)). The incompatibility of events A_i and A_j with $|i - j| \leq s$ leads to

$$S_2 \leq 2 \sum_{i \in \Gamma} \sum_{j = i + s + 1}^{i + s + m} \mathbb{E}\alpha_i \alpha_j.$$

Due to the Markov property we obtain

$$\mathbb{E}\alpha_i \alpha_j = \mathbb{P}\{A_i A_j\} = \mathbb{P}\{A_i\} \mathbb{P}\{A_j|A_i\} \leq Q_s \max_{a \in A_N} \mathbb{P}\{A_j|X_{i+s} = a\}.$$

(8)
Then
\[P\{A_j|X_{i+s} = a\} \leq \max_{b \in \mathcal{A}_N} p_{a,b}^{(j-i-s)} \frac{1}{\pi_b} Q_s \]
\[\leq \max_{b \in \mathcal{A}_N} \pi_b (1 + C e^{-\gamma(j-i-s)}) \frac{1}{\pi_b} Q_s = (1 + C e^{-\gamma(j-i-s)}) Q_s. \]

Substituting this estimate into (8), we obtain
\[E\alpha_i\alpha_j \leq (1 + C e^{-\gamma(j-i-s)}) Q_s^2. \]

Then, it follows from (5) that
\[S_2 \leq 2(n-s)Q_s^2 \sum_{k=1}^{m} (1 + C e^{-\gamma k}) = 2(n-s)Q_s^2 \left(m + C \frac{1 - e^{-\gamma m}}{e^\gamma - 1} \right). \]

Applying definition (2) to the last estimate produces
\[S_2 \leq 2\lambda_s Q_s \left(m + \frac{C}{e^\gamma - 1} \right). \tag{9} \]

To estimate the sum S_3 we use the scheme proposed by Mikhailov and Shoitov [21] and Minakov [22]. We start with a separate summand of S_3, which we denote as $s_{3,i}$ as follows:
\[s_{3,i} = E|Q_s - E(\alpha_i|\{\alpha_j, j \in \Gamma_i^w\})|. \]

According to the Markov property there are three possible cases:

a) for $m+2 \leq i \leq n-s-m-1$
\[s_{3,i} = E|Q_s - E(\alpha_i|\{X_{i-m-1}, X_{i+s+m+1}\})|; \]

b) for $1 \leq i \leq m+1$
\[s_{3,i} = E|Q_s - E(\alpha_i|X_{i+s+m+1})|; \]

c) for $n-s-m \leq i \leq n-s$
\[s_{3,i} = E|Q_s - E(\alpha_i|X_{i-m-1})|. \]

First, for case a) we have
\[s_{3,i} = \sum_{a,b \in \mathcal{A}_N} |Q_s - E(\alpha_i|X_{i-m-1} = a, X_{i+s+m+1} = b)| \times \]
\[\times P\{X_{i-m-1} = a, X_{i+s+m+1} = b\} = \]
ON THE NUMBER OF EVENT APPEARANCES...

\[
\sum_{a,b \in A_N} |Q_s P\{X_{i-m-1} = a, X_{i+s+m+1} = b\} - P\{A_i, X_{i-m-1} = a, X_{i+s+m+1} = b\}|. \tag{10}
\]

Since \(P\{X_{i-m-1} = a, X_{i+s+m+1} = b\} = \pi_a p_{a,b}^{s+2(m+1)}\), then the use of (1) leads to the following estimate

\[
|p_{a,b}^{s+2(m+1)} - \pi_b| \leq C \pi_b e^{-\gamma(s+2(m+1))}.
\]

Now we can find the upper and lower bounds for the second probability in (10):

\[
P\{A_i, X_{i-m-1} = a, X_{i+s+m+1} = b\} \leq \pi_a \max_{u,v \in A_N} p_{u,v}^{(m+1)} \pi_u Q_s p_{v,b}^{(m+1)}
\leq \pi_a Q_s \max_{u,v \in A_N} \pi_u (1 + C e^{-\gamma(m+1)}) \frac{1}{\pi_u} \pi_b (1 + C e^{-\gamma(m+1)})
= \pi_a \pi_b Q_s (1 + C e^{-\gamma(m+1)})^2. \tag{11}
\]

Analogously,

\[
P\{A_i, X_{i-m-1} = a, X_{i+s+m+1} = b\} \geq \pi_a \min_{u,v \in A_N} p_{u,v}^{(m+1)} \pi_u Q_s p_{v,b}^{(m+1)} q
\geq \pi_a Q_s \min_{u,v \in A_N} \pi_u (1 - C e^{-\gamma(m+1)}) \frac{1}{\pi_u} \pi_b (1 - C e^{-\gamma(m+1)})
= \pi_a \pi_b Q_s (1 - C e^{-\gamma(m+1)})^2. \tag{12}
\]

Substituting (11) and (12) into (10), we obtain

\[
s_{3,i} \leq \sum_{a,b \in A_N} \pi_a \pi_b Q_s \left[(1 + C e^{-\gamma(m+1)})^2 - (1 - C e^{-\gamma(s+2(m+1))}) \right]
\leq C e^{-\gamma(m+1)} Q_s \left[2 + C e^{-\gamma(m+1)} + e^{-\gamma(s+m+1)} \right]. \tag{13}
\]

The number of such summands in the sum \(S_3\) is \(n - s - 2m - 2\).

We turn to case b). Similarly to case a) we derive

\[
s_{3,i} = \sum_{a \in A_N} |Q_s - E(\alpha_i | X_{i+s+m+1} = a)| P\{X_{i+s+m+1} = a\}
= \sum_{a \in A_N} |Q_s P\{X_{i+s+m+1} = a\} - P\{A_i, X_{i+s+m+1} = a\}|
\]
Now we write the upper and lower bounds for the second probability in (14):

\[P\{A_i, X_{i+s+m+1} = a\} \leq \max_{v \in \mathcal{A}_N} Q_s p_{v,a}^{(m+1)} \]

\[\leq Q_s \max_{u,v \in \mathcal{A}_N} \pi_a (1 + C e^{-\gamma(m+1)}) = \pi_a Q_s (1 + C e^{-\gamma(m+1)}), \]

\[P\{A_i, X_{i+s+m+1} = a\} \geq \min_{v \in \mathcal{A}_N} Q_s p_{v,a}^{(m+1)} \geq \pi_a Q_s (1 - C e^{-\gamma(m+1)}). \]

From the last two formulas we derive

\[s_{3,i} \leq \sum_{a \in \mathcal{A}_N} \pi_a Q_s \left[(1 + C e^{-\gamma(m+1)}) - 1 \right] = C e^{-\gamma(m+1)} Q_s. \tag{15} \]

Similar calculations in case c) lead to the same estimate. The total number of summands in cases b) and c) is \(2m + 2\). Substituting the estimates of the terms (13) and (15) into (6), we obtain the following estimator:

\[S_3 \leq C e^{-\gamma(m+1)} Q_s (n - s - 2m - 2) \left(2 + C e^{-\gamma(m+1)} + e^{-\gamma(s+m+1)} \right) \]

\[+ C e^{-\gamma(m+1)} Q_s (2m + 2) \]

\[\leq C e^{-\gamma(m+1)} \lambda_s \left(2 + C e^{-\gamma(m+1)} + e^{-\gamma(s+m+1)} \right). \tag{16} \]

The statement of the theorem arises from the formulas (7), (9) and (16). The proof of Theorem 1 is complete.

Acknowledgements

The author is grateful to V.G. Mikhailov for the helpful suggestions and remarks.

References

ON THE NUMBER OF EVENT APPEARANCES... 545

