A NOTE ON THE HOP DOMINATION NUMBER OF A SUBDIVISION GRAPH

C. Natarajan¹ §, S.K. Ayyaswamy²
¹,²Department of Mathematics
School of Arts, Sciences and Humanities
SASTRA Deemed University
Thanjavur, 613 401, Tamilnadu, INDIA

Abstract: Let \(G = (V, E) \) be a graph with \(p \) vertices and \(q \) edges. A subset \(S \subset V(G) \) is a hop dominating set of \(G \) if for every \(v \in V - S \), there exists \(u \in S \) such that \(d(u, v) = 2 \). The minimum cardinality of a hop dominating set of \(G \) is called a hop domination number of \(G \) and is denoted by \(\gamma_h(G) \). The subdivision graph \(S(G) \) of a graph \(G \) is a graph obtained by subdividing every edge of \(G \) exactly once. In this paper, we obtain an upper bound on hop domination number of subdivision graph of any connected graph \(G \) in terms of number of edges \(q \), the maximum degree \(\Delta(G) \) and domination number \(\gamma(G) \) of \(G \). We also characterize the family of connected graphs attaining this bound.

AMS Subject Classification: 05C69
Key Words: hop domination number; subdivision graph; connected graph

1. Introduction

Throughout this paper, by a graph \(G = (V, E) \) we mean a connected simple graph. We denote a graph \(G \) of order \(p \) and size \(q \) by a \((p, q)\)-graph. By subdividing an edge \(e = uv \) of a graph \(G \) we mean deleting the edge \(e \) and introducing a new vertex \(x \) and the edges \(ux \) and \(xv \). For a graph \(G \), the subdivision graph \(S(G) \) is a graph obtained by subdividing every edge of \(G \) exactly once. The distance between two vertices \(u \) and \(v \) of a graph \(G \) is the...
length of the shortest path joining u and v in G and is denoted by $d(u,v)$. A graph G with exactly one cycle is called an unicyclic graph. A set $D \subseteq V$ is said to be a dominating set of G if every vertex in $V - D$ is adjacent to some vertex in D. D is said to be a minimal dominating set of G if no subset of it is a dominating set of G. The minimum cardinality of a minimal dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. In [4], Chartrand et al. studied the exact 2-step dominating sets in graphs.

Recently, Ayyaswamy and Natarajan ([2, 9]) initiated a study on a new domination parameter called hop domination number of a graph and characterized the family of trees and unicyclic graphs with equal hop domination number and total domination number. Ayyaswamy et al. ([1]) found some bounds on hop domination number of a tree. Henning et al. [8] obtained certain probabilistic bounds for this parameter. Farhadi et al. [5] discussed the complexity results of k-hop dominating set of a graph. Pabilona et al. [10, 11] studied connected hop domination and total hop domination on graphs under some binary operations. A vertex u of a graph G is said to hop dominate a vertex $v \in V(G)$ if $d(u,v) = 0$ or $d(u,v) = 2$. A subset $S \subseteq V(G)$ of a graph G is a hop dominating set (hd-set) of G if for every $v \in V - S$, there exists $u \in S$ such that $d(u,v) = 2$. The minimum cardinality of a hop dominating set of G is called the hop domination number of G and is denoted by $\gamma_h(G)$. A path on n vertices is denoted by P_n and a cycle of length n is denoted by C_n. We denote a complete graph with n vertices by K_n and a complete bipartite graph with a bipartition (V_1, V_2) mn vertices by $K_{m,n}$. For other terminologies not defined here we refer to Chartrand and Lesniak ([3]) and Haynes et al. ([6, 7]). It is easy to verify that:

(i) $\gamma_h(P_n) = \gamma_h(C_n) = \begin{cases} 2r, & \text{if } n = 6r; \\ 2r + 1, & \text{if } n = 6r + 1; \\ 2r + 2, & \text{if } n = 6r + s; 2 \leq s \leq 5. \end{cases}$

(ii) $\gamma_h(K_n) = n.$

(iii) $\gamma_h(K_{m,n}) = 2.$

(iv) $\gamma_h(W_n) = 3$, where W_n is a wheel with $n - 1$ spokes.

(v) $\gamma_h(P) = 2$, where P denotes the Peterson graph.
2. Main Results

Observation 1. $\gamma_h[S(P_n)] = \gamma_h(P_{2n-1})$.

Observation 2. $\gamma_h[S(C_n)] = \gamma_h(C_{2n})$.

Proposition 3. $\gamma_h[S(K_n)] = \left\lceil \frac{n}{2} \right\rceil + 1, n \geq 2$.

Proof. Let $V_1 = V(K_n) = \{v_1, v_2, \ldots, v_n\}$. Let $V_2 = \{w_{ij} \in S(K_n) : w_{ij}
$ is a vertex subdividing the edge v_iv_j in $S(K_n)\}$. Then $|V_2| = \frac{n(n-1)}{2} = nC_2$.
Any one vertex v_i is enough to hop dominate all vertices of V_1 and we again require exactly
$\left\lceil \frac{n}{2} \right\rceil$ vertices to hop dominate the nC_2 vertices of V_2. Thus
$\{v_i\} \cup \{w_{j(j+1)} : j \text{ odd; } 1 \leq j \leq n\}$ is a γ_h-set of $S(K_n)$ and therefore
$\gamma_h[S(K_n)] = \left\lceil \frac{n}{2} \right\rceil + 1$. □

Proposition 4. $\gamma_h[S(K_{m,n})] = 2 + \min\{m, n\}$.

Proof. Let (V_1, V_2) be the bipartition of $V(K_{m,n})$ with $|V_1| = m$ and $|V_2| = n$.
Let $V_1 = \{v_i : 1 \leq i \leq m\}$ and $V_2 = \{w_j : 1 \leq j \leq n\}$.
Let $m \leq n$.
Let $V[S(K_{m,n})] = V_1 \cup V_2 \cup V_3$ where $V_3 = \{w_{ij} : w_{ij}\text{ is a vertex subdividing the edge } v_iu_j \text{ in } S(K_{m,n})\}$. As V_1 and V_2 are independent sets, any γ_h-set of $S(K_{m,n})$ contains a vertex from each V_1 and V_2. One can observe that the set $D = \{w_{kk} : 1 \leq k \leq m\}$ is a minimum hd-set of V_3. Therefore
$\gamma_h[S(K_{m,n})] = 2 + |D| = 2 + m = 2 + \min(m, n)$. Hence the result follows. □

Proposition 5. For the Petersen graph P, $\gamma_h[S(P)] = 7$.

Proof. Let us label the vertices of the outer cycle C_5 by v_1, v_2, v_3, v_4, v_5 and the inner cycle by u_1, u_2, u_3, u_4, u_5. Consider the three pairs $(v_i, v_j), (v_i, u_j), (u_i, u_j)$. Only one of them forms an edge in P. Let w_{ij} be the vertex subdividing that edge. It is clear that the set $\{u_i, u_j\} \cup \{v_k\} \cup \{w_{i(i+1)} : i \text{ is odd, } 1 \leq i \leq 4\} \cup \{w_{l(l+3)} : l = 1, 2\}$ is a γ_h-set of $S(P)$ where u_i and u_j are non adjacent vertices and the vertex v_k is adjacent to a vertex $u_k \in N(u_i) \cap N(u_j)$ in P. Hence $\gamma_h[S(P)] = 7$. □

Proposition 6. For a wheel graph W_{n+1} with $n+1$ vertices, $\gamma_h[S(W_{n+1})] = \left\lceil \frac{n}{3} \right\rceil + 2$.
Proof. Let the centre of W_{n+1} be v and let v_1, v_2, \ldots, v_n be the vertices of the outer cycle C_n of W_{n+1}. Let the vertex which is adjacent to v and v_i in $S(W_{n+1})$ be denoted by u_i; $1 \leq i \leq n$ and let the vertex subdividing the edge $v_i v_j$ in $S(W_{n+1})$ be denoted by w_{ij}. One can easily observe that the centre vertex v of W_{n+1} hop dominates the vertices $\{v_i : 1 \leq i \leq n\}$ and the vertex u_2 hop dominates the vertices $\{u_i : 1 \leq i \leq n\}$ and also the vertices w_{12} and w_{23}. Furthermore, the set $D \setminus \{w_{12}\}$ hop dominates the remaining $n - 2$ vertices in $S(W_{n+1})$ where $D = \{w_{i(i+1)} : i \equiv 1 \pmod{3}\}$. Therefore, $\{v\} \cup \{u_j\} \cup D$ is a γ_h-set of $S(W_{n+1})$. Thus $\gamma_h[S(W_{n+1})] = \left\lceil \frac{n}{3} \right\rceil + 2$. \qed

Theorem 7. For any graph G, $\gamma(G) < \gamma_h[S(G)]$.

Proof. Let D be a hop dominating set of $S(G)$. Let $D_1 = D \cap V(G)$ and $D_2 = D \setminus D_1$. Clearly D_1 is the only set hop dominating $V(G)$ since every vertex in D_2 is at odd distance from any vertex of $V(G)$. This shows that $D_1 \neq \emptyset$. Similarly $D_2 \neq \emptyset$. Further, if a vertex v is hop dominated by a vertex u in D_1, then $d(u, v) = 2$ in $S(G)$. This implies there is a path uvw in $S(G)$ and $uv \in E(G)$. Thus v is dominated by u and so $\gamma(G) \leq |D_1| < |D| = \gamma_h[S(G)]$. \qed

Theorem 8. Let G be a (p, q)-graph. Let u be a vertex of maximum degree $\Delta(G)$ and v be a vertex in $N(u)$ such that $\deg(v) = \max_{y \in N(u)} \{\deg(y)\}$. Then $\gamma_h[S(G)] \leq \gamma(G) + q - \Delta(G) - \deg(v) + 2$.

Proof. Let w_0 be the new vertex subdividing the edge uv and S' be a γ-set of G. Let E' be the set of all edges incident with u or v. Let $D_1 = \{w : w \in V[S(G)] \setminus V(G) \text{ is a vertex subdividing the edge } v v' \in E(G) \setminus E'\}$. Then $D = S' \cup \{w_0\} \cup D_1$ is a hop dominating set of $S(G)$ and hence $\gamma_h[S(G)] \leq |D| = \gamma(G) + 1 + (q - \Delta(G) - (\deg(v) - 1)) = \gamma(G) + 2 - \deg(v) + q - \Delta(G)$. \qed

Theorem 9. Let T be a tree with q edges. Let u be a vertex of maximum degree $\Delta(T)$ and let $v \in N(u)$ be a vertex in T such that $\deg(v) = \max_{y \in N(u)} \{\deg(y)\}$. Then $\gamma_h[S(T)] = \gamma(T) + q + 2 - (\Delta(T) + \deg(v))$ if and only if the following conditions hold:

(i) every vertex $w \in N(u) \cup N(v) \setminus \{u, v\}$ is either a leaf or a weak support.

(ii) both $N(u) \setminus \{v\}$ and $N(v) \setminus \{u\}$ cannot contain weak support vertices.

Proof. Assume that $\gamma_h[S(T)] = \gamma(T) + q + 2 - (\Delta(T) + \deg(v))$. Let w_0 be
Thus deg of T hop dominate all vertices of D. Let E be the set of vertices subdividing the edges in E1. In what follows hereafter, we call S' a γ-set of T.

(i) Let w ∈ N(u) ∪ N(v) \ {u, v}. Suppose w ∈ N(u) \ {v} be a vertex of degree r ≥ 3. Let w1 be a vertex subdividing one of the edges incident at w except the edge uw, say ww'. Let Ew denote the set of edges incident at w except the edge uw and let Dw be the set of vertices subdividing the edges in Ew. Then w1 hop dominates all vertices of Dw. Therefore S' ∪ {w0, w1} ∪ (D1 \ Dw) is a hd-set of S(T) and so,

$$\gamma_h[S(T)] \leq \gamma(T) + q + 2 - (\Delta(T) + \text{deg}(v) - 1) - r + 1$$

$$= \gamma(T) + q + 2 - (\Delta(T) + \text{deg}(v)) + r + 2$$

$$= \gamma(T) + q + 4 - (\Delta(T) + \text{deg}(v)) + r$$

$$\leq \gamma(T) + q + 4 - (\Delta(T) + \text{deg}(v)) - 3, \text{ since } r \geq 3$$

$$= \gamma(T) + q + 1 - (\Delta(T) + \text{deg}(v))$$

$$< \gamma(T) + q + 2 - (\Delta(T) + \text{deg}(v)), \text{ a contradiction.}$$

Hence deg(w) ≤ 2 for every w ∈ N(u) \ {v}.

If deg(w) = 1, then nothing to prove. So, let deg(w) = 2.

Now we show that w is a weak support vertex in T. Let y ∈ N(w) \ {u, v} be vertex such that deg(y) ≥ 2.

Suppose y ∈ N(w) \ {u, v} is vertex such that deg(y) ≥ 2.

Let Eu be the set of edge incident with u except the edge uw and Du be the set of vertices subdividing the edges in Eu. Let Ev be the set of edges which are incident at v except the edge uw and Dv be the set of vertices subdividing the edges in Ev. Let E2 be the set of edge which are not incident at u. Let D2 be the set of vertices subdividing the edges in E2. Let Ey be the set of edges incident at y except the edge wy and Dy be the set of vertices subdividing the edges in Ey. Then the vertex w2 which subdivides the edge wy in S(T) will hop dominate all vertices of Dy and the vertex w0 hop dominates all vertices in Du ∪ Dv. Therefore, S' ∪ {w0} ∪ (D2 \ (Dv ∪ Dy)) is a hd-set of S(T). Hence,

$$\gamma_h[S(T)] \leq \gamma(T) + q + 1 - (\Delta(T) + \text{deg}(v) - 1) - \text{deg}(y) + 1$$

$$= \gamma(T) + q + 3 - (\Delta(T) + \text{deg}(v)) - \text{deg}(y)$$

$$\leq \gamma(T) + q + 1 - (\Delta(T) + \text{deg}(v)), \text{ since } \text{deg}(y) \geq 2$$

$$< \gamma(T) + q + 2 - (\Delta(T) + \text{deg}(v)), \text{ a contradiction.}$$

Thus deg(y) = 1 for all y ∈ N(w) \ {u, v}. That is, w is a weak support vertex of T.
Similarly, one can prove that every vertex \(w \in N(v) \setminus \{u\} \) is either a leaf of a weak support of \(T \).

(ii) Suppose both \(N(u) \setminus \{v\} \) and \(N(v) \setminus \{u\} \) have weak support vertices in \(T \).

Let \(N'(u) = \{ w \in N(u) \setminus \{v\} : \deg(w) = 2 \} \) and \(N'(v) = \{ w \in N(v) \setminus \{u\} : \deg(w) = 2 \} \). Let \(N''(u) = \{ w' : w' \) is the vertex subdividing the edge \(uw \) where \(w \in N'(u) \} \) and \(N''(v) = \{ w' : w' \) is the vertex subdividing the edge \(vw \) where \(v \in N'(v) \} \).

By our assumption \(N'(u) \neq \emptyset \) and \(N'(v) \neq \emptyset \). Clearly, \(|N''(u) \cup N''(v)| = q - \Delta(T) - (\deg(v) - 1) \) and so \(S' \cup N''(u) \cup N''(v) \) is a \(\gamma \)-set of \(S(T) \). Therefore, \(\gamma_h[S(T)] \leq \gamma(T) + |S(T)| < \gamma(T) + q - (|S(T)| - 1) = \gamma(T) + q + 2 - (\Delta(T) + \deg(v)) \), a contradiction.

The converse is obvious. \(\square \)

Theorem 10. Let \(G \) be a connected \((p,q)\)-graph having at least one cycle and let \(u \) and \(v \) be vertices as in Theorem 8. Then \(\gamma_h[S(G)] = \gamma(G) + 2 + q - (\Delta(G) + \deg(v)) \) if and only if the following conditions hold:

(i) Every cycle \(C \) in \(G \) contains \(u \) or \(v \) or the edge \(uv \) and the length of \(C \) is at most 5.

(ii) If the longest cycle containing the edge \(uv \) in \(G \) is \(C_3 \), then

\(\textbf{(a)} \) every vertex \(w \in N(u) \cup N(v) \setminus (N(u) \cap N(v) \cup \{u,v\}) \) is a leaf or weak support of degree 2 or a vertex of degree 2 in another cycle \(C_3 \) of \(G \).

\(\textbf{(b)} \) both \(N(u) \setminus \{v\} \) and \(N(v) \setminus \{u\} \) cannot contain weak support vertices in \(G \).

(iii) If the longest cycle containing the edge \(uv \) in \(G \) is \(C = C_4 \), then every vertex \(w \in N(u) \cup N(v) \setminus (N(u) \cap N(v) \cup \{u,v\}) \) is a leaf or a vertex of degree 2 in \(C \).

(iv) If the longest cycle in \(G \) is \(C = C_5 \), then

\(\textbf{(a)} \) the edge \(uv \) is a chord of \(C \)

\(\textbf{(b)} \) every vertex \(w \in N(u) \cup N(v) \setminus (N(u) \cap N(v) \cup \{u,v\}) \) is a leaf or a vertex of degree 2 in \(C \).

(v) Every vertex \(w \in N(u) \cap N(v) \) is of degree at most 3 and if \(w \in N(u) \cap N(v) \) is of degree 3 in \(G \), then there exists at most one edge not adjacent to \(uv \) in \(G \).
Proof. Assume that $\gamma_h[S(G)] = \gamma(G) + 2 + q - (\Delta(G) + \deg(v))$.
Let E_1, D_1 and w_0 be as in Theorem 9.
Throughout this proof, S' denotes a γ-set of G.
(i) Suppose there exists a cycle C in G not containing u and v.
Let $V(C) = \{v_1, v_2, \cdots, v_k\}$. Let w_i, w_{i-1} and w_{i+1} be the vertices in D_1 subdividing the edges $v_{i-1}v_i$, $v_{i-1}v_{i-2}$ and v_iv_{i+1} in C, respectively. Then clearly the vertex w_i hop dominates the vertices w_{i-1} and w_{i+1} in $S(G)$. Therefore $S' \cup \{w_0\} \cup (D_1 \setminus \{w_{i-1}, w_{i+1}\})$ is a hd-set of $S(G)$. Hence

$$\gamma_h[S(G)] \leq \gamma(G) + 1 + q - 2 - (\Delta(G) + \deg(v) - 1)$$

$$= \gamma(G) + q - (\Delta(G) + \deg(v))$$

$$< \gamma(G) + 2 + q - (\Delta(G) + \deg(v)),$$ a contradiction.

Claim: Every cycle C in G is of length at most 5.
Suppose there exists a cycle C containing the edge uv in G such that the length k of $C \geq 6$. Let $V(C) = \{u = v_1, v = v_2, v_3, \cdots, v_k\}$. Then C contains at least three edges not incident at u or v. Let $v_{i-1}v_i$, $v_{i-2}v_{i-1}$ and v_iv_{i+1} be three edges in C not incident at u or v and let w_i, w_{i-1} and w_{i+1} be the vertices in $S(G)$ subdividing these edges respectively. Then w_i hop dominates w_{i-1} and w_{i+1}. Therefore $S' \cup \{w_0\} \cup (D_1 \setminus \{w_{i-1}, w_{i+1}\})$ is a hd-set of $S(G)$ so that

$$\gamma_h[S(G)] \leq \gamma(G) + 1 + q - 2 - (\Delta(G) + \deg(v) - 1)$$

$$= \gamma(G) + q - (\Delta(G) + \deg(v))$$

$$< \gamma(G) + 2 + q - (\Delta(G) + \deg(v)),$$ a contradiction.

Applying a similar argument given in Theorem 9 one can easily prove the conditions $(ii - a)$ and $(ii - b)$.

(iii) Let $C = \langle u, v, x, y \rangle$ be a longest cycle of length 4 containing the edge uv in G.

Claim: Every vertex $w \in N(u) \cup N(v) \setminus ((N(u) \cap N(v)) \cup \{u, v\})$ is a leaf or a vertex of degree 2 in C. Let $w \in N(u) \cup N(v) \setminus ((N(u) \cap N(v)) \cup \{u, v\})$.

Then either $w \in N(u) \setminus (N(u) \cap N(v) \cup \{u, v\})$ or $w \in N(v) \setminus (N(u) \cap N(v) \cup \{u, v\})$.

Case 1: Let $w \in N(u) \setminus (N(u) \cap N(v) \cup \{u, v\})$. Then as discussed in Theorem 9, $\deg(w) \leq 2$. If $\deg(w) = 1$, then clearly w is a leaf. So assume that $\deg(w) \neq 1$.

We claim that w is neither a weak support vertex of degree 2 in G nor a vertex of degree 2 in any other cycle of length 3 or 4 or 5.
Suppose w is a weak support vertex of degree 2 in G. Let z be the leaf adjacent to w in G. Let v_{uw} and v_{wz} be the vertices subdividing the edges uw and wz in $S(G)$. Then the vertex v_{uw} hop dominates all the vertices in D_u and the vertex v_{wz} in $S(G)$. Let w_1 be the vertex subdividing the edge vy in $S(G)$. Then w_1 hop dominates all the vertices in D_v and the vertex v_{xy} that subdivides the edge xy in $S(G)$.

Therefore $S' \cup \{w_1, v_{wz}\} \cup D_2 \setminus (D_v \cup \{v_{xy}, v_{wz}\})$ is clearly a hd-set of $S(G)$. Hence

$$\gamma_h[S(G)] \leq \gamma(G) + 2 + q - \Delta(G) - \deg(v) - 1 - 2 = \gamma(G) + q - \Delta(G) - \deg(v) + 1 < \gamma(G) + 2 + q - (\Delta(G) + \deg(v)), \text{ a contradiction.}$$

Thus the vertex w cannot be a weak support of degree 2 in G. The other cases follow similarly.

Similarly, Case 2 can be argued for $w \in N(v) \setminus (N(u) \cap N(v) \cup \{u, v\})$.

Next we prove condition (iv). Let $C = C_5$ be a longest cycle of length 5 in G.

Claim: The edge uv is a chord of C in G.

Suppose the edge uv is not a chord of C.

Case 1: $u \in V(C)$ and $v \notin V(C)$.

Let $V(C) = \{u, w, x, y, z\}$. Then clearly the edges wx, xy and yz are in E_1. Let w_1, w_2 and w_3 be the vertices subdividing the edges wx, xy and yz respectively. Then $S' \cup \{w_0\} \cup D_1 \setminus \{w_1, w_3\}$ is a hd-set of $S(G)$. Hence

$$\gamma_h[S(G)] \leq \gamma(G) + 1 + q - 2 - (\Delta(G) + \deg(v) - 1) = \gamma(G) + q - 1 - \Delta(G) - \deg(v) + 1 = \gamma(G) + q - \Delta(G) - \deg(v) < \gamma(G) + 2 + q - (\Delta(G) + \deg(v)), \text{ a contradiction.}$$

Similarly we can prove that uv is not an edge in C_5.

One can prove the condition (b) of (iv) with similar arguments given in the proof of (iii).

(v) Suppose there exist two edges xw_1 and yw_2 in G such that $w_1, w_2 \in N(u) \cap N(v)$ and $\deg(w_1) = \deg(w_2) = 3$. Let E_u and E_v be the set of edges incident at u and v respectively except the edge uv. Let D_u be the set of vertices subdividing the edges in E_u and D_v be the set of vertices subdividing the edges in E_v. Let w'_1 and w'_2 be the vertices subdividing the edges uw_1 and vw_2 respectively. Let x' and y' be the vertices subdividing the edges xw_1 and yw_2 respectively.
yw_2 respectively. Then w'_1 hop dominates all vertices in D_u and the vertex x'. Similarly, w'_2 hop dominates all vertices in D_v and the vertex y' in $S(G)$.

Therefore $S' \cup \{w'_1, w'_2\} \cup (D_1 \setminus \{x', y'\})$ is a hd-set of $S(G)$. Hence,

$$\gamma_h[S(G)] \leq \gamma(G) + 2 + q - (\Delta(G) + \deg(v) - 1)$$

$$= \gamma(G) + q - \Delta(G) - \deg(v) + 1$$

$$< \gamma(G) + 2 + q - (\Delta(G) + \deg(v)), \text{ a contradiction.}$$

Conversely, assume that the conditions (i) to (v) hold good.

Let w_0 be a vertex subdividing the edge uv. Then w_0 hop dominates all vertices subdividing the edges incident at u and v. As $\deg(u) = \Delta(G)$ and by the choice of v, every hd-set of $S(G)$ contains w_0. Furthermore, as any two vertices of $V(G)$ in $S(G)$ are of even distance, every vertex $v \in V(G)$ can be hop dominated only by a vertex of $V(G)$ in $S(G)$. Therefore every γ_h-set of $S(G)$ contains $\gamma(G)$ vertices of $V(G)$. Let $e = wx \in E_1$. If $w \in N(u)$ and $x \notin N(v)$, then by condition (ii-a), w is a weak support vertex of degree 2 in G.

If $w \in N(u)$ and $x \in N(v)$, then by condition (iii), wx is an edge in C_4 that contains the edge uv. Thus in both cases either the vertex subdividing the edge uw or the vertex subdividing the edge wx is in every γ_h-set of $S(G)$.

If $w \in N(u) \cap N(v)$, then by condition (v) wx is the only edge not adjacent to uv in G. Therefore, one of the vertices subdividing the edges uv, vw and wx is in any γ_h-set of $S(G)$. If $w \notin N(u)$, then by condition (ii-b) the vertex w is a weak support vertex of degree 2 in $N(v) \setminus \{u\}$. Then the vertex subdividing the edge wx or vw is in every γ_h-set of $S(G)$.

Thus in all cases we see that for every edge in E_1 there corresponds a subdividing vertex in every γ_h-set of $S(G)$. Therefore every γ_h-set of $S(G)$ contains at least $\gamma(G) + 1 + |E_1|$ vertices. This implies

$$\gamma_h[S(G)] \geq \gamma(G) + 1 + |E_1|$$

$$= \gamma(G) + 1 + q - (\Delta(G) + \deg(v) - 1)$$

$$= \gamma(G) + 2 + q - (\Delta(G) + \deg(v) - 1).$$

But by Theorem 8, $\gamma_h[S(G)] \leq \gamma(G) + 2 + q - (\Delta(G) + \deg(v))$.

Thus $\gamma_h[S(G)] = \gamma(G) + 2 + q - (\Delta(G) + \deg(v))$. \hfill \Box

References

