A NOTE ON THE APPROXIMATION OF PDES

WITH UNBOUNDED COEFFICIENTS - THE SPECIAL

ONE-DIMENSIONAL CASE

WITH UNBOUNDED COEFFICIENTS - THE SPECIAL

ONE-DIMENSIONAL CASE

F.F. Gonçalves^{1}, M.R. Grossinho^{2}, E. Morais^{3}

^{1} CEMAPRE-REM and ISEG, Universidade de Lisboa

Rua do Quelhas 6, 1200-781 Lisbon, PORTUGAL

Also with Universidade Europeia

Estrada da Correia 53, 1500-210 Lisbon, PORTUGAL

^{2} CEMAPRE-REM and ISEG, Universidade de Lisboa

Rua do Quelhas 6, 1200-781 Lisbon, PORTUGAL

^{3} CMAT, Universidade do Minho

Campus de Gualtar, 4710-057 Braga, PORTUGAL

Rua do Quelhas 6, 1200-781 Lisbon, PORTUGAL

Also with Universidade Europeia

Estrada da Correia 53, 1500-210 Lisbon, PORTUGAL

Rua do Quelhas 6, 1200-781 Lisbon, PORTUGAL

Campus de Gualtar, 4710-057 Braga, PORTUGAL

Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

- [1] Y. Achdou, O. Pironneau, Computational Methods for Option Pricing, Frontiers in Applied Mathematics, SIAM, USA (2005).
- [2] G. Barles, Ch. Daher and M. Romano, Convergence of numerical schemes for parabolic equations arising in Finance theory, Math. Models Methods Appl. Sci., 5 No 1 (1995), 125-143.
- [3] M. Broadie and J. B. Detemple, Option pricing: valuation models and applications, Manag. Sci., 50, No 9 (2004), 1145-1177.
- [4] J. Douglas Jr. and T.F. Russel, Numerical methods for convectiondominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19, No 5 (1982), 871-885.
- [5] M. Ehrhardt, Finite difference schemes on unbounded domains, In: Applications of Nonstandard Finite Difference Schemes (Vol. 2) (Ed. R.E. Mickens), World Scientific (2005), 343-384.
- [6] M. Ehrhardt, Discrete transparent boundary conditions for Schrödingertype equations for non-compactly supported initial data, Appl. Numer. Math., 58, No 5 (2008), 660-673.
- [7] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, Amer. Math. Soc., USA (1998).
- [8] F.F. Gonçalves, Numerical approximation of partial differential equations arising in financial option pricing, Ph.D. Thesis, University of Edinburgh, UK (2007).
- [9] F.F. Gonçalves, M.R. Grossinho and E. Morais, Discretisation of abstract linear evolution equations of parabolic type. Adv. Difference Equ., 2012, No 14 (2012), 1-29; doi: 10.1186/1687-1847-2012-14.
- [10] F.F. Gonçalves and M.R. Grossinho, Spatial approximation of nondivergent type parabolic PDEs with unbounded coefficients related to finance, Abstr. Appl. Anal. (2014), Special Issue: Functional Differential and Difference Equations with Applications (2013); doi: 10.1155/2014/801059.
- [11] I. Gyöngy and N.V. Krylov, Stochastic partial differential equations with unbounded coefficients and applications I, Stochastics, 32 (1990), 53-91.
- [12] I. Gyöngy and N.V. Krylov, First derivatives estimates for finite-difference schemes, Math. Comp., 78 (2009), 2019-2046.
- [13] I. Gyöngy and N.V. Krylov, Higher order derivative estimates for finitedifference schemes for linear elliptic and parabolic equations, Methods Appl. Anal., 16, No 2 (2009), 187-216.
- [14] I. Gyöngy and N.V. Krylov, Accelerated finite difference schemes for second order degenerate elliptic and parabolic problems in the whole space, Math. Comp., 80, No 275 (2011), 1431-1458.
- [15] D. Lamberton and B. Lapeyre, Introduction to Stochastic Calculus Applied to Finance. Chapman and Hall, UK (1996).
- [16] J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications, Vol. 1 (in French), Dunod, Gauthier-Villars, Paris, France (1968).
- [17] P. Lötstedt, J. Persson, L. von Sydow and J. Tysk, Spacetime adaptive finite difference method for European multi-asset options, J. Comput. Math. Appl., 53, No 8 (2007), 1159-1180.
- [18] E. Morais, Analytical and Numerical Methods for Some Problems Related to Financial Option Pricing, Ph.D. Thesis, University of Lisbon, Portugal (2013).
- [19] D.M. Pooley, P.A. Forsyth and K.R. Vetzal, Numerical convergence properties of option pricing PDEs with uncertain volatility, IMA J. Numer. Anal., 23 (2003), 241-267.
- [20] D.Y. Tangman, A. Gopaul and M. Bhuruth, Numerical pricing of options using high-order compact finite difference schemes, J. Comput. Appl. Math., 218 (2008), 270-280.
- [21] V. Thomée, Finite difference methods for linear parabolic equations, In: Finite Difference Methods (Part 1) – Solution of Equations in Rn (Part 1), Handbook of Numerical Analysis, Vol. I (Ed. P.G. Ciarlet, J.L. Lions), North-Holland (1990), 3-196.