ON THE BOUNDEDNESS OF DUNKL-TYPE MAXIMAL
COMMUTATORS IN THE DUNKL-TYPE
MODIFIED MORREY SPACES

Abstract

In this paper we consider the generalized shift operator, associated with the Dunkl operator and we investigate maximal commutators, commutators of singular integral operators and commutators of the fractional integral operators associated with the generalized shift operator.

The boundedness of the Dunkl-type maximal commutator $M_{b,\alpha}$ from the Dunkl-type modified Morrey space $\widetilde{{\cal M}}_{p,\lambda,\alpha}(R)$ to $\widetilde{{\cal M}}_{p,\lambda,\alpha}(R)$ for all $1 < p < \infty$ when $b \in BMO_{\alpha}(R)$ are proved.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 3
Year: 2020

DOI: 10.12732/ijam.v33i3.9

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] C. Abdelkefi and M. Sifi, Dunkl translation and uncentered maximal operator on the real line, Intern. J. Math. and Math. Sciences, 2007 (2007), Art. ID 87808, 9 pp.; doi:10.1155/2007/87808.
  2. [2] C. Abdelkefi and M. Sifi, On the uniform convergence of partial Dunkl integrals in Besov-Dunkl spaces, Fract. Calc. Appl. Anal., 9, No 1 (2006), 43-56.
  3. [3] C. Abdelkefi and M. Sifi, Characterization of Besov spaces for the Dunkl operator on the real line, J. of Inequalities in Pure and Appl. Math., 8, No 3 (2007), Art. 73, 1-21.
  4. [4] D.R. Adams, A note on Riesz potentials, Duke Math., 42 (1975), 765-778.
  5. [5] C. Aykol, H. Armutcu and M.N. Omarova, Maximal commutator and commutator of maximal function on modified Morrey spaces, Trans. of NAS of Azerbaijan, Issue Mathematics, 36, No 1 (2016), 29-35.
  6. [6] S. Chanillo, A note on commutators, Indiana Math. J., 31 (1982), 7-16.
  7. [7] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103, No 3 (1976), 611-635.
  8. [8] C.F. Dunkl, Differential-difference operators associated with reflections groups, Trans. Amer. Math. Soc., 311 (1989), 167-183.
  9. [9] A. Gogatishvili, R.Ch. Mustafayev and M. Agcayazi, Weak-type estimates in Morrey spaces for maximal commuatator and commutator of maximal function, Tokyo J. of Mathematics, 41, No 1 (2018), 193-218.
  10. [10] V.S. Guliyev, J. Hasanov and Y. Zeren, Necessary and sufficient conditions for the boundedness of the Riesz potential in modified Morrey spaces J. Math. Inequal., 5, No 4 (2011), 491-506.
  11. [11] V.S. Guliyev, Y.Y. Mammadov, Function spaces and integral operators for the Dunkl operator on the real line, Khazar J. of Math., 2, No 4 (2006), 17-42.
  12. [12] V.S.Guliyev, Y.Y.Mammadov, On fractional maximal function and fractional integrals associated with the Dunkl operator on the real line, J. Math. Anal. Appl., 353, No 1 (2009), 449-459.
  13. [13] E.V. Guliyev, A. Eroglu, Y.Y. Mammadov, Necessary and sufficient conditions for the boundedness of Dunkl-Type fractional maximal operator in the Dunkl-type Morrey spaces, Abstract and Appl. Anal., 2010 (2010), Art. ID 976493, 10 pp.; doi:10.1155/2010/976493.
  14. [14] J.J. Hasanov, A.M. Musayev, Oscillatory integral operators and their commutators in modified weighted Morrey spaces with variable exponent, Int. J. Appl. Math., 32, No 3 (2019), 521-535; doi:10.12732/ijam.v32i3.12.
  15. [15] G. Hu, X. Shi, and Q. Zhang, Weighted norm inequalities for the maximal singular integral operators on spaces of homogeneous type, J. Math. Anal. Appl., 336, No 1 (2007), 1-117.
  16. [16] Y.Y. Mammadov, On maximal operator associated with the Dunkl operator on R, Khazar J. of Math., 2, No 4 (2006), 59-70.
  17. [17] Y.Y. Mammadov, S.A.Hasanli, On the boundedness of commutators Dunkl-type maximal operator in the Dunkl-type Morrey spaces, Caspian J. of Appl. Mathematics, Ecology and Economics, 6, No 1 (2018), 37-52.
  18. [18] Y.Y. Mammadov, S.A. Hasanli, On the boundedness of Dunkl-type fractional integral operator in the generalized Dunkl-type Morrey spaces, Int. J. Appl. Math., 31, No 2 (2018), 211-230; doi:10.12732/ijam.v31i2.4.
  19. [19] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.
  20. [20] M. Sifi, F. Soltani, Generalized Fock spaces and Weyl relations for the Dunkl kernel on the real line, J. Math. Anal. Appl., 270 (2002), 92-106.
  21. [21] F. Soltani, Lp-Fourier multipliers for the Dunkl operator on the real line, J. Funct. Anal., 209 (2004), 16-35.
  22. [22] F. Soltani, Littlewood-Paley operators associated with the Dunkl operator on R, J. Funct. Anal., 221 (2005), 205-225.
  23. [23] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ (1993).
  24. [24] M. R¨osler, Bessel-type signed hypergroups on R, In: Probability Measures on Groups and Related Structures, XI Oberwolfach, 1994 (Eds. H. Heyer and A. Mukherjea), World Scientific, River Edge, NJ (1995), 292-304.
  25. [25] M.E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 1407-1456.
  26. [26] K. Trimeche, Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators, Integr. Trans. Spec. Funct., 13 (2002), 17-38.
  27. [27] G.N. Watson, A Treatise on Theory of Bessel Functions, Cambridge University Press, Cambridge (1966).