ON A SUBCLASS OF STARLIKE FUNCTIONS
ASSOCIATED WITH GENERALIZED CARDIOID
Yuzaimi Yunus1, Ajab Bai Akbarally2, Suzeini Abdul Halim3 1 Faculty of Computer and Mathematical Sciences
Universiti Teknologi MARA, Cawangan Melaka
Kampus Jasin, 77300 Melaka, MALAYSIA 2 Universiti Teknologi MARA, 40450 Shah Alam
Selangor, MALAYSIA 3 Institute of Mathematical Sciences
Universiti Malaya, 50603 Kuala Lumpur, MALAYSIA
The purpose of this paper is to investigate a subclass of analytic functions associated with generalized cardioid in the open unit disk. The geometric properties of functions in the subclass are investigated. Subsequently, the bound for initial coefficients, the Fekete-Szego inequality and second Hankel determinant inequality for functions belonging to this class are obtained. Furthermore, we find the sharp estimate for Toeplitz determinant, for this class.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] R.M. Ali, N.K. Jain and V. Ravichandran, On the radius constants for
classes of analytic functions, Bull. Malays. Math. Sci.Soc, 36, No 1 (2013),
23-38.
[2] R.M. Ali, N.K. Jain and V. Ravichandran, Radii of starlikeness associated
with the lemniscate of Bernoulli and left-half plane, Applied Mathematics
and Computation, 218, No 11 (2012), 6557-6565.
[3] M.K. Aouf, J. Dziok and J. Sokol, On a subclass of strongly starlike functions,
Applied Mathematics Letters, 24, No 1 (2011), 27-32.
[4] P.L. Duren, Univalent Functions (Grundlehren der mathematischen Wissenschaften)
259), Springer-Verlag, New York-Berlin-Heidelberg-Tokyo
(1983).
[5] J. Dziok, R.K. Raina and J. Sokol, On a class of starlike functions related
to a shell-like curve connected with Fibonacci numbers, Mathematical and
Computer Modelling 57, (2013), 1203-1211.
[6] I. Efraimidis, A generalization of Livingston’s coefficient inequalities for
functions with positive real part, Journal of Mathematical Analysis and
Applications, 435, No 1 (2016), 369-379.
[7] B.A. Frasin, M. Darus, On the Fekete-Szeg¨o problem, International Journal of Mathematics and Mathematical Sciences, 24, No 9 (2000), 577-581.
[8] S.A. Halim, R. Omar, Applications of certain functions associated with
lemniscate Bernoulli, J. Indones. Math. Soc, 18, No 2 (2012), 93-99.
[9] A. Janteng, S.A. Halim and M. Darus, Coefficient inequality for a function
whose derivative has a positive real part, Journal of Inequalities in Pure
and Applied Mathematics, 7, No 2 (2006), 1-5.
[10] S. Kanas, An unified approach to the Fekete-Szeg¨o problem, Applied Mathematics and Computation, 218, No 17 (2012), 8453-8461.
[11] S.K. Lee, V. Ravichandran and S. Supramaniam, Bounds for the second
Hankel determinant of certain univalent functions, Journal of Inequalities
and Applications, 2013, No 1 (2013), 281.
ON A SUBCLASS OF STARLIKE FUNCTIONS... 781
[12] R.J. Libera and E.J. Zlotkiewicz, Coefficient bounds for the inverse of a
function with derivative in P, In: Proc. of the American Mathematical
Society, 87, No 2 (1983), 251-257.
[13] W. Ma, D. Minda, A unified treatment of some special classes of univalent
functions, In: Proc. of the Conference on Complex Analysis, Int. Press
(1994), 157-169.
[14] T.H.Macgregor, Functions whose derivative has a positive real part, Transactions of the American Mathematical Society, 104, No 3 (1962), 532-537.
[15] R. Mendiratta, S. Nagpal and V. Ravichandran, A subclass of starlike functions
associated with left-half of the lemniscate of Bernoulli, International
Journal of Mathematics 25, No 9 (2014), 1450090.
[16] K.I. Noor, Hankel determinant problem for the class of functions with
bounded boundary rotation, Revue Roumaine de Math´ematiques Pures et
Appliqu´ees, 28, No 8 (1983), 731-739.
[17] E. Paprocki, J. Sok´ol, The extremal problems in some subclass of strongly
starlike function, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 20 (1996),
89-94.
[18] Ch. Pommerenke, On the coefficients and Hankel determinants of univalent
functions, Journal of the London Mathematical Society 1 (1966), 111-122.
[19] C. Ramachandran, D. Kavita, Toeplitz determinant for some subclasses of
analytic functions, Global Journal of Pure and Applied Mathematics, 13,
No 2 (2017), 785-793.
[20] A.K. Sahoo, J.Patel, Hankel determinant for a class of analytic functions
related with lemniscate of Bernoulli, International Journal of Analysis and
Applications, 6, No 2 (2014), 170-177.
[21] C. Selvaraj, T.R.K. Kumar, Second Hankel determinant for certain classes
of analytic function, International Journal of Applied Mathematics, 28, No
1 (2015), 37-50; doi: 10.12732/ijam.v28i1.4.
[22] K. Sharma, N.K. Jain and V. Ravichandran, Starlike functions associated
with a cardioid, Afrika Matematika 27,(2016), 923-939.
[23] K. Sharma, V. Ravichandran, Applications of subordination theory to starlike
functions, Bull. Iranian Math. Soc., 42, No 3 (2016), 761-777.
782 Y. Yunus, A.B. Akbarally, S.A. Halim
[24] S. Sivasubramanian, M. Govindaraj and G. Murugusundaramoorthy,
Toeplitz matrices whose elements are the coefficients of analytic functions
belonging to certain conic domains, International Journal of Pure and Applied Mathematics, 109, No 10 (2016), 39-49.
[25] J. Sok´ol, Coefficient estimates in a class of strongly starlike functions,
Kyungpook Mathematical Journal, 49, No 2 (2009).
[26] J.Sok´ol, J. Stankiewicz, Radius of convexity of some subclasses of strongly
starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19 (1996),
101-105.
[27] D.K. Thomas, The second Hankel determinant for starlike functions of
order alpha, arXiv Preprint, arXiv:1508.05839 (2015).
[28] Y. Yunus, A.B. Akbarally and S.A. Halim, Properties of certain subclass
of starlike functions defined by a generalized operator, International Journal of Applied Mathematics, 31, No 4 (2018), 597-611; doi:
10.12732/ijam.v3li46.
[29] Y. Yunus, S.A. Halim and A.B. Akbarally,Subclass of starlike functions
associated with a limacon, AIP Conference Proc. 1974 (2018), # 030023;
doi: 10.1063/1.5041667.