ON ZEROS OF AN ENTIRE FUNCTION HAVING
AN INTEGRAL REPRESENTATION AND COINCIDING
WITH EXPONENTIAL-TYPE QUASIPOLYNOMS

Abstract

In this paper, we study zeros of an entire function of the following special form:

\begin{displaymath}
\Delta(\lambda) = \sum_{k=1}^N P_k\cdot\lambda^{m_k} \cdot...
...lambda} + \int\limits_{-1}^1 e^{\lambda t} \cdot \Phi(t) dt,
\end{displaymath}

which is a linear combination of functions previously studied in [#!18!#], [#!19!#], [#!20!#], [#!21!#] associated with regular differential operators of the third and first orders on an interval.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 3
Year: 2022

DOI: 10.12732/ijam.v35i3.6

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] V.B. Lidskii and V.A. Sadovnichii, Regularized sums of zeros of a class of entire functions, Funct. Anal. its Appl., No 1 (1967), 133-139; DOI:10.1007/BF01076085.
  2. [2] E.C. Titchmarsh, The zeros of certain integral function, Proc. of the London Mathematical Society, s2-25, No 1 (1926), 283-302; DOI: 10.1112/plms/s2-25.1.283.
  3. [3] M.L. Cartwright, The zeros of certain integral functions, The Quarterly J. of Mathematics, os-1, No 1 (1930), 38-59; DOI: 10.1093/gmath/os-1.1.38.
  4. [4] B.J. Levin, Distribution of Zeros of Entire Functions, AMS, Providence, R.I. (1964).
  5. [5] R. Bellman and K. Cook, Differential-Difference Equations, Academic Press, New York (1963).
  6. [6] A.F. Leont’ev, Entire Functions and Exponential Problems, Nauka, Moscow (1983) (in Russian).
  7. [7] B.E. Kanguzhin and M.A. Sadybekov, Differential Operators on a Seg- ment. Distribution of Eigenvalues, Gylym, Shymkent (1996) (in Russian).
  8. [8] O.H. Hald, Discontinuous inverse eigen value problems, Commun. on Pure Applied Mathematics, No 37 (1984), 539-577; DOI: 10.1002/cpa.3160370502.
  9. [9] V.A. Sadovnichii, V.A. Lyubishkin and Y. Belabbasi, On regularized sums of root of an entire function of a certain class, Sov. Math. Dokl., No 22 (1980), 613-616; https://zbmath.org/?q=an:0474.30027.
  10. [10] A.M. Sedletskii, On the zeros of the Fourier transform of finite measure, Mathematical Notes, 53, No 1 (1993), 77-84; DOI: 10.1007/BF01208527.
  11. [11] Y.F. Korobeinik, On distribution of zeros for a class of meromorphic func- tions, Vladikavkaz Math. Journal, 19, No 1 (2017), 41-49 (in Russian); http://mi.mathnet.ru/rus/vmj/v19/i1/p41.
  12. [12] V.B. Sherstyukov, Asymptotic properties of entire functions with given laws of distribution of zeros, In: Comlex Analysis. Entire Functions and Their Applications. Itogi Nauki I Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz. Moscow: VINITI, No 161 (2019), 104-129 (in Russian); http://mi.mathnet.ru/into435.
  13. [13] G.G. Braichev, Sharp estimates of tupes of entire functions with ze- ros on rays, Mathematical Notes, 97, No 4 (2015), 41-49; DOI: 10.1134/S0001434615030232.
  14. [14] K.G. Malyutin and M.V. Kabanko, The meromorphic functions of com- pletely regular growth on the upper half-plane, Vestnik Udmurtskogo Uni- versiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 30, No 3 (2020), 396-409; DOI: 10.35634/vm200304.
  15. [15] N.S. Imanbaev, B.E. Kanguzhin and B.T. Kalimbetov, On zeros the char- acteristic determinant of the spectral problem for a third-order differential operator on a segment with nonlocal boundary conditions, Advances in Difference Equations, 2013 (2013); DOI: 10.1186/1687-1847-20113-110.
  16. [16] D.M. Polyakov, Nonlocal perturbation of a periodic problem for a second- order differential operator, Differential Equations, 57 (2021), 11-18; DOI: 10.1134/S001226612101002X.
  17. [17] S.I. Mitrokhin, On the asymptotics of spectrum of an even-order dif- ferential operator with a delta-function potential, J. Samara State Tech. Univ., Ser. Phus. Math. Sci., 25, No 4 (2021), 634-662; https://mi.mathnet.ru/vsgtu1798.
  18. [18] N.S. Imanbaev, Distribution of eigen values of a third-order differential operator with strongly regular nonlocal boundary conditions, AIP Con- ference Proceedings, 1997, Art. No 020027 (2018): 020027-1 - 020027-5; DOI: 10.1063/1.5049021.
  19. [19] N.S. Imanbaev and Y. Kurmysh, On zeros of an entire function coincidiny with exponential type quasi-polynomials, associated with a regular third- order differential operator on interval, Bull. of the Karaganda University. Mathematics Series, No 3 (103) (2021), 44-53; DOI: 10.31489/2021M3/44- 53.
  20. [20] N.S. Imanbaev and Y. Kurmysh, On computation of eigen functions of composite type equations with regular boundary value conditions, Inter- national Journal of Applied Mathematics, 34, No 4 (2021), 681-692; DOI: 10.12732/ijam.v34i4.7.
  21. [21] N.S. Imanbaev, On nonlocal perturbation of the problem on eigenvalues of differentiation operator on a segment, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 31, No 2 (2021), 186-193; DOI: 10.35634/vm210202.
  22. [22] A.M.A. El-Sayed, M.Sh. Mohamed and R.E.M. Embia, On the multiple solutions of a nonhomogeneous Sturm-Liouville equation with nonlocal boundary conditions, International Journal of Applied Mathematics, 32, No 1 (2019), 35-44; DOI: 10.12732/ijam.v32i1.3.
  23. [23] N.S. Imanbaev and M.A. Sadybekov, Stability of basis property of a peri- odic problem with nonlocal perturbation of boundary conditions, AIP Con- ference Proceeding, 1759, Art. No 020080 (2016); DOI: 10.1063/1.4959694.
  24. [24] N.S. Imanbaev and M.A. Sadybekov, Stability of basis property of a type of problems on eigenvalues with nonlocal perturbation of bound- ary conditions, Ufa Mathematical Journal, 3, No 2 (2011), 27-32; http://mi.mathnet.ru/rus/ufa/v3/i2/p28.
  25. [25] B.V. Shabat, An Introduction to Complex Analysis. In 2 parts. Part 1. Functions of One Variable, URSS, Moscow (2015) (in Russian).
  26. [26] N.S. Imanbaev, Stability of the basis property of eigenvalue systems of Sturm-Liouville operators with integral perturbation of the boundary con- dition, Electronic J. of Differential Equations, 2016, No 87 (2016), 1-8; http://ejde.math.txstate.edu.