ABSTRACT FRACTIONAL CALCULUS
FOR m-ACCRETIVE OPERATORS

Abstract

In this paper we aim to construct an abstract model of a differential operator with a fractional integro-differential operator composition in final terms, where modeling is understood as an interpretation of concrete differential operators in terms of the infinitesimal generator of a corresponding semigroup. We study such operators as a Kipriyanov operator, Riesz potential, difference operator. Along with this, we consider transforms of m-accretive operators as a generalization, introduce a special operator class and provide a description of its spectral properties.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 1
Year: 2021

DOI: 10.12732/ijam.v34i1.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] R.A. Adams, Compact imbeddings of weighted Sobolev spaces on unbounded domains, J. of Diff. Equations, 9 (1971), 325-334.
  2. [2] M.S. Agranovich, Spectral problems in Lipshitz mapping areas, Modern Mathematics, Fundamental Direction, 39 (2011), 11-35.
  3. [3] T.S. Aleroev, Spectral analysis of one class of non-selfadjoint operators, Diff. Equations, 20, No 1 (1984), 171-172.
  4. [4] T.S. Aleroev, B.I. Aleroev, On eigenfunctions and eigenvalues of one nonselfadjoint operator, Diff. Equations, 25, No 11 (1989), 1996-1997.
  5. [5] T.S. Aleroev, On eigenvalues of one class of non-selfadjoint operators, Diff. Equations, 30, No 1 (1994), 169-171.
  6. [6] A. Ashyralyev, A note on fractional derivatives and fractional powers of operators, J. Math. Anal. Appl., 357 (2009), 232-236.
  7. [7] Yu.M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Translations of Mathematical Monographs Vol. 17, Providenve, RI (1968).
  8. [8] F.E. Browder, On the spectral theory of strongly elliptic differential operators, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 1423-1431.
  9. [9] A. Erdelyi, Fractional integrals of generalized functions, J. Austral. Math. Soc., 14, No 1 (1972), 30-37.
  10. [10] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear NonSelfadjoint Operators in a Hilbert Space, Nauka, Fizmatlit, Moscow (1965).
  11. [11] T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan, 13, No 3 (1961), 246-274.
  12. [12] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York (1980).
  13. [13] V.E. Katsnelson, Conditions under which systems of eigenvectors of some classes of operators form a basis, Funct. Anal. Appl., 1, No 2 (1967), 122-132.
  14. [14] I.A. Kipriyanov, On spaces of fractionally differentiable functions, Proc. of the Academy of Sciences. USSR, 24 (1960), 665-882.
  15. [15] I.A. Kipriyanov, The operator of fractional differentiation and powers of the elliptic operators, Proc. of the Academy of Sciences. USSR, 131 (1960), 238-241.
  16. [16] V. Kiryakova, Generalized Fractional Calculus and Applications, LongmanJ. Wiley, Harlow-N. York (1994).
  17. [17] M.A. Krasnoselskii, P.P. Zabreiko, E.I. Pustylnik, P.E. Sobolevskii, Integral Operators in the Spaces of Summable Functions, Nauka, Fizmatlit, Moscow (1966).
  18. [18] M.G. Krein, Criteria for completeness of the system of root vectors of a dissipative operator, Uspekhi Mat. Nauk 14 (1959), 145-152 (In Russian); Engl. transl. in: Amer. Math. Soc. Transl., 26, No 2 (1963), 221-229.
  19. [19] M.V. Kukushkin, Spectral properties of fractional differentiation operators, Electr. J. of Diff. Equations, 2018, No 29 (2018), 1-24. (The improved version is available at arXiv:1710.02662v2 [math.FA].)
  20. [20] M.V. Kukushkin, On one method of studying spectral properties of non-selfadjoint operators, Abstr. and Appl. Anal. 2020 (2020); doi:10.1155/2020/1461647.
  21. [21] M.V. Kukushkin, Asymptotics of eigenvalues for differential operators of fractional order, Fract. Calc. Appl. Anal. 22, No 3 (2019), 658-681; DOI:10.1515/fca-2019-0037.
  22. [22] E.R. Love, Two index laws for fractional integrals and derivatives, J. Austral. Math. Soc., 14, No 4 (1972), 385-410.
  23. [23] A.S. Markus, V.I. Matsaev, Operators generated by sesquilinear forms and their spectral asymptotics, Linear operators and integral equations, Mat. Issled. (Stiintsa, Kishinev), 61 (1981), 86-103.
  24. [24] A.S. Markus, Expansion in root vectors of a slightly perturbed selfadjoint operator, Soviet Math. Dokl., 3 (1962), 104-108.
  25. [25] V.I. Matsaev, A method for the estimation of the resolvents of nonselfadjoint operators, Soviet Math. Dokl., 5 (1964), 236-240.
  26. [26] A. McBride, A note of the index laws of fractional calculus, J. Austral. Math. Soc. A, 34, No 3 (1983), 356-363.
  27. [27] S.G. Mihlin, Variational Methods in Mathematical Physics, Nauka, Moscow (1970).
  28. [28] A.M. Nakhushev, The Sturm-Liouville problem for an ordinary differential equation of the second order with fractional derivatives in lower terms, Proc. of the Academy of Sciences. USSR, 234, No 2 (1977), 308-311.
  29. [29] A.M. Nakhushev, Fractional Calculus and its Application, Fizmatlit, Moscow (2003).
  30. [35] V.I. Smirnov, A Course of Higher Mathematics: Integration and Functional Analysis, Volume 5, Pergamon (2014).
  31. [36] K. Yosida, Functional Analysis, 6th Ed., Springer-Verlag, BerlinHeidelberg-New York (1980).
  32. [37] E. Zeidler, Applied Functional Analysis, Applications to Mathematical Physics, Ser. Applied Math. Sci., Vol. 108, Springer-Verlag, New York (1995).